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Titanium: A Java Dialect 
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Computing

Katherine Yelick
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Motivation: Target Problems

Many modeling problems in astrophysics, biology, 
material science, and other areas require 
0Enormous range of spatial and temporal scales

To solve interesting problems, one needs:
0Adaptive methods
0Large scale parallel machines

Titanium is designed for
0Structured grids
0Locally-structured grids (AMR)
0Unstructured grids (in progress)

Source: J. Bell, LBNL
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Titanium Background

Based on Java, a cleaner C++
0Classes, automatic memory management, etc.
0Compiled to C and then machine code, no JVM

Same parallelism model at UPC and CAF
0SPMD parallelism
0Dynamic Java threads are not supported

Optimizing compiler
0Analyzes global synchronization
0Optimizes pointers, communication, memory
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Summary of Features Added to Java
Multidimensional arrays: iterators, subarrays, copying
Immutable (“value”) classes
Templates
Operator overloading
Scalable SPMD parallelism replaces threads
Global address space with local/global reference 
distinction
Checked global synchronization 
Zone-based memory management (regions)
Libraries for collective communication, distributed 
arrays, bulk I/O, performance profiling
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Outline

Titanium Execution Model
0SPMD
0Global Synchronization
0Single

Titanium Memory Model

Support for Serial Programming

Performance and Applications

Compiler/Language Status
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SPMD Execution Model

Titanium has the same execution model as UPC and CAF

Basic Java programs may be run as Titanium programs, 
but all processors do all the work.

E.g., parallel hello world
class HelloWorld {

public static void main (String [] argv) {
System.out.println(“Hello from proc “ 

+ Ti.thisProc()
+ “ out of “
+ Ti.numProcs());

}
}

Global synchronization done using Ti.barrier()
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Barriers and Single

Common source of bugs is barriers or other collective 
operations inside branches or loops

barrier, broadcast, reduction, exchange

A “single” method is one called by all procs
public single static void allStep(...)

A “single” variable has same value on all procs
int single timestep = 0;

Single annotation on methods is optional, but useful in 
understanding compiler messages

Compiler proves that all processors call barriers together
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Explicit Communication: Broadcast
Broadcast is a one-to-all communication

broadcast <value> from <processor>

For example: 
int count = 0;

int allCount = 0;

if (Ti.thisProc() == 0) count = computeCount();

allCount = broadcast count from 0;

The processor number in the broadcast must be single; 
all constants are single.
0All processors must agree on the broadcast source.

The allCount variable could be declared single.
0All will have the same value after the broadcast.
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More on Single
Global synchronization needs to be controlled
if (this processor owns some data) {

compute on it
barrier

}

Hence the use of “single” variables in Titanium

If a conditional or loop block contains a barrier, all 
processors must execute it
0conditions must contain only single variables

Compiler analysis statically enforces freedom from 
deadlocks due to barrier and other collectives being 
called non-collectively "Barrier Inference" [Gay & Aiken]
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Single Variable Example
Barriers and single in N-body Simulation
class ParticleSim {

public static void main (String [] argv) {
int single allTimestep = 0;
int single allEndTime = 100;
for (; allTimestep < allEndTime; allTimestep++){
read remote particles, compute forces on mine
Ti.barrier();
write to my particles using new forces
Ti.barrier();

}
}
}     

Single methods inferred by the compiler 
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Using Broadcast to Assign Single
Broadcast returns a single value

The following example will have a randomly chosen 
process initiate the broadcast at each step

int myChoice = (int) (Math.random() * 
Ti.numProcs());

for (int single i = 0; i < 100; i++) {
master = broadcast myChoice from master; 

}

The example is contrived, but this paradigm is used  
to assign single values that come from user input 
or a file, for example.
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Outline
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Global Address Space

Globally shared address space is partitioned 

References (pointers) are either local or global 
(meaning possibly remote)

Object heaps
are shared
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Use of Global / Local
Global references (pointers) may point to remote 
locations
0Reference are global by default
0Easy to port shared-memory programs

Global pointers are more expensive than local
0True even when data is on the same processor
0Costs of global:

space (processor number + memory address)
dereference time (check to see if local)

May declare references as local
0Compiler will automatically infer local when possible
0This is an important performance-tuning mechanism
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Global Address Space

Processes allocate locally

References can be passed to 
other processes

class C { public int val;... }

Process 0

HEAP0

Process 1

HEAP1

val:  0

lv

gv

lv

gv

C gv; // global pointer
C local lv; // local pointer 
if (Ti.thisProc() == 0) {

lv = new C();
}
gv = broadcast lv from 0;    
//data race    
gv.val = Ti.thisProc()+1; 

int winner = gv.val

winner: 2 winner: 2

2
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Aside on Titanium Arrays

Titanium adds its own multidimensional array 
class for performance

Distributed data structures are built using a 1D 
Titanium array

Slightly different syntax, since Java arrays still 
exist in Titanium, e.g.: 

int [1d] a;

a = new int [1:100];

a[1] = 2*a[1] - a[0] – a[2]; 

Will discuss these more later…
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Explicit Communication: Exchange
To create shared data structures
0each processor builds its own piece
0pieces are exchanged (for objects, just exchange 

pointers)

Exchange primitive in Titanium
int [1d] single allData;
allData = new int [0:Ti.numProcs()-1];
allData.exchange(Ti.thisProc()*2);

E.g., on 4 procs, each will have copy of allData:

0 2 4 6
allData
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Distributed Data Structures
Building distributed arrays: 
Particle [1d] single [1d] allParticle = 

new Particle [0:Ti.numProcs-1][1d];

Particle [1d] myParticle = 

new Particle [0:myParticleCount-1];

allParticle.exchange(myParticle);

Now each processor has array of pointers, one to 
each processor’s chunk of particles

P0 P1 P2

All to all broadcast
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Region-Based Memory Management
An advantage of Java over C/C++ is:
0Automatic memory management

But garbage collection:
0Has a reputation of slowing serial code
0Does not scale well in a parallel environment

Titanium approach:
0Preserves safety – cannot deallocate live data
0Garbage collection is the default (on most platforms)
0Higher performance is possible using region-based 

explicit memory management
0Takes advantage of memory management phases
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Region-Based Memory Management
Need to organize data structures 

Allocate set of objects (safely)

Delete them with a single explicit call (fast)
PrivateRegion r = new PrivateRegion();
for (int j = 0; j < 10; j++) {

int[] x = new ( r ) int[j + 1];
work(j, x);

}
try { r.delete(); }
catch (RegionInUse oops) {

System.out.println(“failed to delete”);
}
}
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Outline

Titanium Execution Model

Titanium Memory Model

Support for Serial Programming
0Immutables
0Operator overloading
0Multidimensional arrays
0Templates

Performance and Applications

Compiler/Language Status
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Java Objects
Primitive scalar types: boolean, double, int, etc.
0implementations store these on the program stack
0access is fast -- comparable to other languages

Objects: user-defined and standard library
0always allocated dynamically in the heap
0passed by pointer value (object sharing) 
0has implicit level of indirection
0simple model, but inefficient for small objects

2.6

3
true

real:   7.1

imag:  4.3
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Java Object Example
class Complex {

private double real;

private double imag;

public Complex(double r, double i) {

real = r; imag = i; }

public Complex add(Complex c) { 

return new Complex(c.real + real, c.imag + imag);  

public double getReal { return real; }

public double getImag { return imag; }

}

Complex c = new Complex(7.1, 4.3);

c = c.add(c);

class VisComplex extends Complex { ... }
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Immutable Classes in Titanium
For small objects, would sometimes prefer
0to avoid level of indirection and allocation overhead
0pass by value (copying of entire object)
0especially when immutable -- fields never modified

extends the idea of primitive values to user-defined types

Titanium introduces immutable classes
0all fields are implicitly final (constant)
0cannot inherit from or be inherited by other classes
0needs to have 0-argument constructor

Examples: Complex, xyz components of a force 

Note: considering lang. extension to allow mutation
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Example of Immutable Classes
The immutable complex class nearly the same

immutable class Complex {
Complex () {real=0; imag=0;}
...

}

Use of immutable complex values
Complex c1 = new Complex(7.1, 4.3);
Complex c2 = new Complex(2.5, 9.0);
c1 = c1.add(c2);  

Addresses performance and programmability
0Similar to C structs in terms of performance
0Support for Complex with a general mechanism

Zero-argument 
constructor 
requirednew 

keyword
Rest unchanged.  No assignment 
to fields outside of constructors.
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Operator Overloading

Titanium provides operator overloading
0Convenient in scientific code
0Feature is similar to that in C++

class Complex {

...

public Complex op+(Complex c) { 

return new Complex(c.real + real, c.imag + imag);  

}

Complex c1 = new Complex(7.1, 4.3);

Complex c2 = new Complex(5.4, 3.9);

Complex c3 = c1 + c2;
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Arrays in Java
Arrays in Java are objects

Only 1D arrays are directly 
supported

Multidimensional arrays 
are arrays of arrays

General, but slow

2d 
array

Subarrays are important in AMR (e.g., interior of a grid)
0Even C and C++ don’t support these well
0Hand-coding (array libraries) can confuse optimizer

Can build multidimensional arrays, but we want
0Compiler optimizations and nice syntax
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Multidimensional Arrays in Titanium
New multidimensional array added
0Supports subarrays without copies

can refer to rows, columns, slabs                             
interior, boundary, even elements…

0Indexed by Points (tuples of ints)
0Built on a rectangular set of Points, RectDomain
0Points, Domains and RectDomains are built-in 

immutable classes, with useful literal syntax

Support for AMR and other grid computations
0domain operations: intersection, shrink, border
0bounds-checking can be disabled after debugging
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Unordered Iteration
Motivation:
0Memory hierarchy optimizations are essential
0Compilers sometimes do these, but hard in general

Titanium has explicitly unordered iteration
0Helps the compiler with analysis 
0Helps programmer avoid indexing details

foreach (p in r) { … A[p] … }

p is a Point (tuple of ints), can be used as array index 
r is a RectDomain or Domain

Additional operations on domains to transform 

Note: foreach is not a parallelism construct
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Point, RectDomain, Arrays in General

Points specified by a tuple of ints

RectDomains given by 3 points:
0lower bound, upper bound (and optional stride)

Array declared by num dimensions and type

Array created by passing RectDomain

double [2d] a;

Point<2> lb = [1, 1];
Point<2> ub = [10, 20];

RectDomain<2> r = [lb : ub];

a = new double [r];
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Simple Array Example
Matrix sum in Titanium

Point<2> lb = [1,1];
Point<2> ub = [10,20];
RectDomain<2> r = [lb:ub];

double [2d] a = new double [r];
double [2d] b = new double [1:10,1:20];
double [2d] c = new double [lb:ub:[1,1]];

for (int i = 1; i <= 10; i++)
for (int j = 1; j <= 20; j++) 
c[i,j] = a[i,j] + b[i,j];

foreach(p in c.domain()) { c[p] = a[p] + b[p]; }

No array allocation here

Syntactic sugar

Optional stride

Equivalent loops
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More Array Operations

Titanium arrays have a rich set of operations

None of these modify the original array, they just 
create another view of the data in that array
You create arrays with a RectDomain and get it 
back later using A.domain() for array A
0A Domain is a set of points in space
0A RectDomain is a rectangular one

Operations on Domains include +, -, * (union, 
different intersection)

translate restrict slice (n dim to n-1)
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MatMul with Titanium Arrays
public static void matMul(double [2d] a, 

double [2d] b, 

double [2d] c) {

foreach (ij in c.domain()) {

double [1d] aRowi = a.slice(1, ij[1]);

double [1d] bColj = b.slice(2, ij[2]);

foreach (k in aRowi.domain()) {

c[ij] += aRowi[k] * bColj[k];

}

}

}

Current performance: comparable to 3 nested loops in C

March 5, 2004 CS267 Lecture 12 34

Example: Setting Boundary Conditions

foreach (l in local_grids.domain()) {
foreach (a in all_grids.domain()) {

local_grids[l].copy(all_grids[a]);
}

}

"ghost" cells

Proc 0 Proc 1
local_grids

all_grids

• Can allocate arrays in a global index space.
• Let compiler computer intersections

March 5, 2004 CS267 Lecture 12 35

Templates
Many applications use containers:
0Parameterized by dimensions, element types,…
0Java supports parameterization through inheritance

Can only put Object types into containers
Inefficient when used extensively

Titanium provides a template mechanism closer to C++
0Can be instantiated with non-object types (double, 

Complex) as well as objects

Example: Used to build a distributed array package
0Hides the details of exchange, indirection within the 

data structure, etc.
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Example of Templates

template <class Element> class Stack {
. . .
public Element pop() {...}
public void push( Element arrival ) {...}

}

template Stack<int> list = new template Stack<int>();
list.push( 1 );
int x = list.pop();

Addresses programmability and performance

Not an object
Strongly typed, 

No dynamic cast
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Using Templates: Distributed Arrays

template <class T, int single arity> 
public class DistArray {
RectDomain <arity> single rd;
T [arity d][arity d] subMatrices;
RectDomain <arity> [arity d] single subDomains;
...
/* Sets the element at p to value */
public void set (Point <arity> p, T value) {
getHomingSubMatrix (p) [p] = value;

}
}

template DistArray <double, 2> single A = 
new template 

DistArray<double, 2> ( [[0,0]:[aHeight, aWidth]] );
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Outline

Titanium Execution Model

Titanium Memory Model

Support for Serial Programming

Performance and Applications
0Serial Performance on pure Java (SciMark)
0Parallel Applications
0Compiler status & usability results

Compiler/Language Status
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– Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux
– IBM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JIT) for 32-bit Linux
– Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
– gcc 3.2, -O3 (ANSI-C version of the SciMark2 benchmark)

Java Compiled by Titanium Compiler

SciMark Small - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM
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SciMark Large - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM
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– Same as previous slide, but using a larger data set
– More cache misses, etc.

Java Compiled by Titanium Compiler
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Local Pointer Analysis
Global pointer access is more expensive than local

Compiler analysis can frequently infer that a given global pointer 
always points locally
0Replace global pointer with a local one
0Local Qualification Inference (LQI) 
0Data structures must be well partitioned

Effect of LQI
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Applications in Titanium
Benchmarks and Kernels
0Scalable Poisson solver for infinite domains
0NAS PB: MG, FT, IS, CG
0Unstructured mesh kernel: EM3D
0Dense linear algebra: LU, MatMul
0Tree-structured n-body code
0Finite element benchmark

Larger applications
0Gas Dynamics with AMR
0Heart and Cochlea simulation (ongoing)
0Genetics: micro-array selection
0Ocean modeling with AMR (in progress)
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Heart Simulation: Immersed Boundary Method

Problem: compute blood flow in the heart
0Modeled as an elastic structure in an 

incompressible fluid.
The “immersed boundary method” [Peskin and McQueen].
20 years of development in model

0Many other applications: blood clotting, inner ear, 
paper making, embryo growth, and more

Can be used for design                                          
of prosthetics
0Artificial heart valves
0Cochlear implants
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Performance of IB Code

IBM SP 
performance 
(seaborg)
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Error on High-Wavenumber Problem

Charge is
01 charge of 

concentric waves 
02 star-shaped 

charges.

Largest error is where 
the charge is changing 
rapidly. Note:
0discretization error
0faint decomposition 
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Run on 16 procs

-6
.4

7x
10

-9
0 

   
  1

.3
1x

10
-9

March 5, 2004 CS267 Lecture 12 46

Scalable Parallel Poisson Solver
MLC for Finite-Differences by Balls and Colella

Poisson equation with infinite boundaries
0arise in astrophysics, some biological systems, etc.

Method is scalable
0Low communication (<5%)                                         

Performance on
0SP2 (shown) and T3E
0scaled speedups
0nearly ideal (flat)

Currently 2D and
non-adaptive
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AMR Gas Dynamics
Hyperbolic Solver [McCorquodale and Colella]
0Implementation of Berger-Colella algorithm
0Mesh generation algorithm included

2D Example (3D supported)
0Mach-10 shock on solid surface                                       

at oblique angle

Future: 3D Ocean Model based on Chombo algorithms
0[Wen and Colella]
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Titanium Compiler Status

Titanium runs on almost any machine
0Requires a C compiler and C++ for the translator
0Pthreads for shared memory
0GASNet for distributed memory, which exists on

Quadrics (Elan), IBM/SP (LAPI), Myrinet (GM), Infiniband, 
UDP, Shem* (Altix and X1), Dolphin* (SCI), and MPI
Shared with Berkeley UPC compiler

Recent language and compiler work
0Indexed (scatter/gather) array copy
0Non-blocking array copy*
0Loop level cache optimizations
0Inspector/Executor*

* Work is still in progress
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Programmability

Immersed boundary method developed in ~1 year
0Extended to support 2D structures ~1 month
0Reengineered over ~6 months

Preliminary code length measures
0Simple torus model

Serial Fortran torus code is 17045 lines long (2/3 comments)
Parallel Titanium torus version is 3057 lines long.

0Full heart model
Shared memory Fortran heart code is 8187 lines long
Parallel Titanium version is 4249 lines long.

0Need to be analyzed more carefully, but not a significant 
overhead for distributed memory parallelism
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Titanium and UPC Project Ideas

Past 267 project ideas
0Tree-based N-Body code in Titanium
0Finite element code in Titanium

Future project ideas for Titanium and UPC
0Splash benchmarks in either language
0Missing NAS benchmarking in Titanium
0Your favorite application

What makes it interesting?
0Understanding the performance and scalability

Why does it perform as it does?
Performance model
Effectiveness of optimizations in application, runtime, compiler?
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Titanium Group (Past and Present)
Susan Graham
Katherine Yelick
Paul Hilfinger
Phillip Colella (LBNL)
Alex Aiken

Greg Balls
Andrew Begel
Dan Bonachea
Kaushik Datta
David Gay
Ed Givelberg
Arvind Krishnamurthy

Ben Liblit
Peter McQuorquodale (LBNL)
Sabrina Merchant
Carleton Miyamoto
Chang Sun Lin
Geoff Pike
Luigi Semenzato (LBNL)
Armando Solar-Lezama
Jimmy Su
Tong Wen (LBNL)
Siu Man Yau
and many undergraduate 
researchers
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