
Local Qualification
Inference for Titanium

Ben Liblit
UC Berkeley

CS-263 / CS-265
Spring 1998

2

Overview

• Introduction to Titanium

• Introduction to BANE

• Formulating the Analysis

• Implementation Strategy

• Conclusions

3

Introduction to Titanium

• Titanium: a new language for high-
performance scientific computing.

• Syntax & semantics derived from Java, but
compiled to native code.

• Explicit, SPMD parallelism.
• Targeted at both shared- and distributed-

memory architectures.

4

Titanium Memory Model

• Each processor has a local stack & heap.
Foo f, g;

f f

g g

5

Titanium Memory Model

• Each processor has a local stack & heap.
Foo f, g;

• Allocation takes place locally.
f = new Foo();

f f

g g

Foo Foo

6

Titanium Memory Model

• Each processor has a local stack & heap.
Foo f, g;

• Allocation takes place locally.
f = new Foo();

• Language primitives allow sharing of data.
g = broadcast f from 0;

f f

g g

Foo Foo

7

Distributed Memory:
Creating an Illusion

• References are free to point anywhere.
• Use “wide” pointers: <proc, addr>.
• Add runtime checks and messaging:

if (p.proc == MyProc)
result = *(p.addr);
else
result = RemoteRead(p.proc, p.addr);

8

Why This is Unacceptable

• Even local dereferences must go through a
conditional test and branch.

• Conditional assignment from a function call
confounds many traditional optimizations.

• Many references are always be local, and
programmers know which ones.

9

Solution: Explicit Qualification

• Explicitly declare selected references as “local”.
Foo local f = new Foo;
Foo g = broadcast f from 0;

• Allocations produce local values.
• Broadcasts & exchanges produce global values.

f f

 g g

Foo Foo

10

Widening and Narrowing

• Local references implicitly widen to global.
Foo local f = new Foo();
Foo g = f;

• Narrowing global to local must be explicit,
and is checked at runtime.
Foo g = broadcast …;
Foo local bad = g;
Foo local ok = (Foo local) g;

11

Better, But Not Good Enough

• Compiler can check programmers’ claims.
• But programmers may miss opportunities,

particularly in complex data types.
Foo local [] local [] local grid;

• Also, how do we handle legacy code?
– Minimal Java runtime: 16,000 lines without a

local qualifier anywhere in sight.
– Titanium benchmarks written for SMP’s.

12

Enter BANE:
The Berkeley Analysis Engine

• BANE is a generic program analysis tool
based on constraint systems.
– Feed in a set of constraints; pull out a least

solution that satisfies them all.

• For this analysis, the “least solution” will
add “local” wherever possible.

• The “constraints” will prevent us from
violating the type system.

13

Formulating the Problem

• Define a lattice { local, global }, where
local < global.

• Each declared reference corresponds to an
unknown value on this lattice.

“Foo x” ↔ unknown x
“Foo [] a” ↔ unknowns <a0, a1 >

• Apply constraints based on program, guided
by Titanium’s type rules.

14

A Simple Example: Assignments

• Source program:

Foo x, y, z;

y = new Foo();
z = broadcast …;

x = y;
x = z;

• Constraint system:

unknowns { x, y, z }

y ≥ local
z ≥ global

x ≥ y
x ≥ z

15

More Interesting:
Method Invocation

• Source program:

Foo x;
String s;

x = broadcast …;
s = x.toString();

Sys.out.print(s);

• Final constraints include:

– x ≥ global
– x.toString = Foo.toString
– x.toString.this ≥ x
– s ≥ x.toString.result
– Sys.out.print.arg ≥ s

16

Implementation Strategy

• Existing Titanium compiler has information
we need about types, names, declarations…

• Titanium compiler written in C++
• BANE written in SML
• SML-to-C calling interface too primitive

17

Solution: Serialization

AST
Exporter

(@0 assign
(@1 var x …)
(@2 …) …)

Results
Handler

AST
Importer

Constraints
Generator

 @1780: global
 @5C34: local
 @8FB0:<local,…>

18

Preliminary Results:
Integration Works, but Badly

• Successfully analyzed Titanium runtime
library, including java.{io, lang, util}.

• 16,000 lines of code.
• 99,200 AST nodes.
• 19 megabyte serialized AST dump.
• Four minutes to load AST into SML.
• Clearly, more work is needed here.

19

Preliminary Results:
Analysis Looks Promising

• 8,500 unknowns.
• 11,700 binary constraints.
• Complete analysis in eleven seconds.
• 79% automatically localized.
• 21% remain global

– pessimistic assumptions about native methods

• Java semantics are a big win!

20

Preliminary Results:
Adaptive Mesh Refinement

• 15,000 additional AST nodes. (+16%)

• 3,000 additional unknowns. (+35%)

• Two seconds longer to solve. (+20%)

• Globals increase from 21% to 22% of total.

21

Future Work

• Annotate native methods.
• Feed results back into Titanium compiler.

– Benchmark performance speedup.
– Estimate precision of results.

• Improved integration strategy.
• More sophisticated analyses.

– Polymorphic analysis for methods.
– Incorporate profiling feedback.

	Local Qualification Inference for Titanium
	Overview
	Introduction to Titanium
	Titanium Memory Model 1
	Titanium Memory Model 2
	Titanium Memory Model 3
	Distributed Memory: Creating an Illusion
	Why This is Unacceptable
	Solution: Explicit Qualification
	Widening and Narrowing
	Better, But Not Good Enough

	Formulating the Analysis
	Enter BANE: The Berkeley Analysis Engine
	Formulating the Problem
	A Simple Example: Assignments
	More Interesting: Method Invocation

	Implementation Strategy
	Solution: Serialization

	Conclusions
	Preliminary Results
	Integration Works, but Badly
	Analysis Looks Promising
	Adaptive Mesh Refinement

	Future Work

