Local Qualification
Inference for Titanium

Ben Liblit
UC Berkeley
CS-263/ CS-265
Spring 1998

Overview

Introduction to Titanium
Introduction to BANE
Formulating the Analysis
|mplementation Strategy

Conclusions

|ntroduction to Titanium

Titanium: anew language for high-
performance scientific computing.

Syntax & semantics derived from Java, but
compiled to native code.

Explicit, SPMD parallelism.

Targeted at both shared- and distributed-
memory architectures.

Titanium Memory Model

f f

9 9

o Each processor has alocal stack & heap.
Foo f, Q;

Titanium Memory Model

9 9

o Each processor has alocal stack & heap.
Foo f, Q;

* Allocation takes place locally.
f = new Foo();

Titanium Memory Model

)

9 9

o Each processor has alocal stack & heap.
Foo f, Q;

* Allocation takes place locally.
f = new Foo();
« Language primitives allow sharing of data.
= broadcast f from O;

Distributed Memory:
Creating an lllusion

» References are free to point anywhere.
e Use“wid€e’ pointers. <pr oc, addr >.

* Add runtime checks and messaging:

1 f (p.proc == MyProc)
result = *(p.addr);
el se

result = RenoteRead(p.proc, p.addr);

Why This s Unacceptable

* Even local dereferences must go through a
conditional test and branch.

e Conditional assignment from afunction call
confounds many traditional optimizations.

 Many references are always be local, and
programmers know which ones.

Solution: Explicit Qualification

—)

9 9

o Explicitly declare selected referencesas“l ocal ”.
Foo | ocal f = new Foo:;
= broadcast f from O;

 Allocations produce local values.
e Broadcasts & exchanges produce global values.

Widening and Narrowing

 Local references implicitly widen to global.
Foo | ocal f = new Foo();
— f,
« Narrowing global to local must be explicit,
and Is checked at runtime.

= broadcast ..
Foo | ocal bad '
Foo | ocal ok

(Foo | ocal)

10

Better, But Not Good Enough

o Compiler can check programmers’ clams.

e But programmers may miss opportunities,
particularly in complex datatypes.
Foo | ocal [] local [] |ocal grid;

* Also, how do we handle legacy code?

— Minima Javaruntime: 16,000 lines without a
local qualifier anywhere in sight.

— Titanium benchmarks written for SMP's.

11

Enter BANE:
The Berkeley Analysis Engine

« BANE Isageneric program analysis tool
based on constraint systems.
— Feed in aset of constraints; pull out aleast
solution that satisfies them all.

* For thisanalysis, the “least solution” will
add “l ocal " wherever possible.

 The“constraints’ will prevent us from
violating the type system.

12

Formulating the Problem

 Definealattice{ local, global }, where
local < global.

» Each declared reference corresponds to an
unknown value on this lattice.
“Foo X” « unknown X
“Foof[]ad « unknowns <a,, a; >

« Apply constraints based on program, guided
by Titanium’stype rules.

13

A Simple Example: Assignments

e Source program: e Constraint system:
Foo x, vy, zZ; unknowns{ X, v, z}
y = new Foo(); y 3 local
z = broadcast .., z3 global
X =Y, X3y
X = Z; X3 z

14

More Interesting:
Method Invocation

e Source program: e Final constraints include:
Foo X; — X3 global
String s; — X.toSring = Foo.toString
— X.toSring.this3® x
X = broadcast .., — s3 x.toString.result
s = x.toString(); — Sys.out.print.arg3 s

Sys.out. print(s);

15

|mplementation Strategy

Existing Titanium compiler has information
we need about types, names, declarations...

Titanium compiler written in C++
BANE written in SML

SML-to-C calling interface too primitive

16

Solution: Serialization

AST (@ assign AST
(@ var x .)
Exporter (@ .) .) |mporter

S soe

Results < @780 gl obal Constraints

@C34: | ocal
Handler @FBO: <l ocal , .. Generator

17

Preliminary Results;
Integration Works, but Badly

Successfully analyzed Titanium runtime
library, including java.{10, lang, util}.

16,000 lines of code.

99,200 AST nodes.

19 megabyte serialized AST dump.
Four minutesto load AST into SML.
Clearly, more work i1s needed here.

18

Preliminary Results,
Analysis Looks Promising

8,500 unknowns.

11,700 binary constraints.

Complete analysis in eleven seconds.
79% automatically localized.

21% remain global
— pessimistic assumptions about native methods

Java semantics are abig win!

19

Preliminary Results,
Adaptive Mesh Refinement
15,000 additional AST nodes. (+16%)
3,000 additional unknowns. (+35%)
Two seconds longer to solve. (+20%)

Globals increase from 21% to 22% of total.

20

Future Work

Annotate native methods.

Feed results back into Titanium compiler.

— Benchmark performance speedup.
— Estimate precision of results.

|mproved integration strategy.

More sophisticated analyses.
— Polymorphic analysis for methods.
— Incorporate profiling feedback.

21

	Local Qualification Inference for Titanium
	Overview
	Introduction to Titanium
	Titanium Memory Model 1
	Titanium Memory Model 2
	Titanium Memory Model 3
	Distributed Memory: Creating an Illusion
	Why This is Unacceptable
	Solution: Explicit Qualification
	Widening and Narrowing
	Better, But Not Good Enough

	Formulating the Analysis
	Enter BANE: The Berkeley Analysis Engine
	Formulating the Problem
	A Simple Example: Assignments
	More Interesting: Method Invocation

	Implementation Strategy
	Solution: Serialization

	Conclusions
	Preliminary Results
	Integration Works, but Badly
	Analysis Looks Promising
	Adaptive Mesh Refinement

	Future Work

