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|ntroduction to Titanium

Titanium: anew language for high-
performance scientific computing.

Syntax & semantics derived from Java, but
compiled to native code.

Explicit, SPMD parallelism.

Targeted at both shared- and distributed-
memory architectures.



Titanium Memory Model
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Titanium Memory Model
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o Each processor has alocal stack & heap.
Foo f, Q;

* Allocation takes place locally.
f = new Foo();
« Language primitives allow sharing of data.
= broadcast f from O;



Distributed Memory:
Creating an lllusion

» References are free to point anywhere.
e Use“wid€e’ pointers. <pr oc, addr >.

* Add runtime checks and messaging:

1 f (p.proc == MyProc)
result = *(p.addr);
el se

result = RenoteRead(p.proc, p.addr);



Why This s Unacceptable

* Even local dereferences must go through a
conditional test and branch.

e Conditional assignment from afunction call
confounds many traditional optimizations.

 Many references are always be local, and
programmers know which ones.



Solution: Explicit Qualification
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o Explicitly declare selected referencesas“l ocal ”.
Foo | ocal f = new Foo:;
= broadcast f from O;

 Allocations produce local values.
e Broadcasts & exchanges produce global values.



Widening and Narrowing

 Local references implicitly widen to global.
Foo | ocal f = new Foo();
— f,
« Narrowing global to local must be explicit,
and Is checked at runtime.

= broadcast ..
Foo | ocal bad '
Foo | ocal ok

(Foo | ocal)
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Better, But Not Good Enough

o Compiler can check programmers’ clams.

e But programmers may miss opportunities,
particularly in complex datatypes.
Foo | ocal [] local [] |ocal grid;

* Also, how do we handle legacy code?

— Minima Javaruntime: 16,000 lines without a
local qualifier anywhere in sight.

— Titanium benchmarks written for SMP's.
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Enter BANE:
The Berkeley Analysis Engine

« BANE Isageneric program analysis tool
based on constraint systems.
— Feed in aset of constraints; pull out aleast
solution that satisfies them all.

* For thisanalysis, the “least solution” will
add “l ocal " wherever possible.

 The“constraints’ will prevent us from
violating the type system.
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Formulating the Problem

 Definealattice{ local, global }, where
local < global.

» Each declared reference corresponds to an
unknown value on this lattice.
“Foo X” « unknown X
“Foof[]ad  « unknowns <a,, a; >

« Apply constraints based on program, guided
by Titanium’stype rules.
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A Simple Example: Assignments

e Source program: e Constraint system:
Foo x, vy, zZ; unknowns{ X, v, z}
y = new Foo(); y 3 local
z = broadcast ..,  z3 global
X =Y, X3y
X = Z; X3 z
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More Interesting:
Method Invocation

e Source program: e Final constraints include:
Foo X; — X3 global
String s; — X.toSring = Foo.toString
— X.toSring.this3® x
X = broadcast .., — s3 x.toString.result
s = x.toString(); — Sys.out.print.arg3 s

Sys.out. print(s);
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|mplementation Strategy

Existing Titanium compiler has information
we need about types, names, declarations...

Titanium compiler written in C++
BANE written in SML

SML-to-C calling interface too primitive
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Solution: Serialization

AST (@ assign AST
(@ var x .)
Exporter (@ .) .) |mporter

S soe

Results < @780 gl obal Constraints

@C34: | ocal
Handler @FBO: <l ocal , .. Generator
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Preliminary Results;
Integration Works, but Badly

Successfully analyzed Titanium runtime
library, including java.{10, lang, util}.

16,000 lines of code.

99,200 AST nodes.

19 megabyte serialized AST dump.
Four minutesto load AST into SML.
Clearly, more work i1s needed here.
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Preliminary Results,
Analysis Looks Promising

8,500 unknowns.

11,700 binary constraints.

Complete analysis in eleven seconds.
79% automatically localized.

21% remain global
— pessimistic assumptions about native methods

Java semantics are abig win!
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Preliminary Results,
Adaptive Mesh Refinement
15,000 additional AST nodes. (+16%)
3,000 additional unknowns.  (+35%)
Two seconds longer to solve.  (+20%)

Globals increase from 21% to 22% of total.
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Future Work

Annotate native methods.

Feed results back into Titanium compiler.

— Benchmark performance speedup.
— Estimate precision of results.

|mproved integration strategy.

More sophisticated analyses.
— Polymorphic analysis for methods.
— Incorporate profiling feedback.
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