Titanium: A Java Dialect for
High Performance Computing

Dan Bonachea

U.C. Berkeley
and LBNL
http://titanium.cs.berkeley.edu

(slides courtesy of Kathy Y elick)

Titanium Group (Past and Present)

Susan Graham « BenlLiblit
Katherine Y elick « Peter McQuorquodale (LBNL)
i:'L“';“g)Tgﬁ;(LBNL) + SabrinaMerchant

] .
Alex Aiken « Carleton M|y§moto

¢ Chang SunLin

Greg Balls « Geoff Pike
Andrew Begel « Luigi Semenzato (LBNL)
Dan Bonachea e Jimmy Su
Kaushik Datta « Tong Wen (LBNL)
David Gay + SiuManYau
Ed Givelberg

_ X (and many undergrad researchers)
Arvind Krishnamurthy

Motivation: Target Problems

« Many modeling problemsin astrophysics, biology,
material science, and other areasrequire
— Enormous range of spatial and temporal scales
« Tosolveinteresting problems, one needs:
— Adaptive methods
— Large scale parallel machines

¢ Titanium is designed for methods with
— Structured grids
— Locally-structured grids (AMR)
— Unstructured grids (in progress)

Common Requirements

¢ Algorithmsfor numerical PDE
computationsare
— communication intensive
— memory intensive
* AMR makesthese harder
— more small messages
— more complex data structures
— most of the programming effort is
debugging the boundary cases
— locality and load balance trade-off is hard

Titanium

» Based on Java, acleaner C++

— classes, automatic memory management, etc.

— compiled to C and then native binary (no JVM)
» Same parallelism model as UPC and CAF

— SPMD with a global address space

— Dynamic Java threads are not supported
 Optimizing compiler

— static (compile-time) optimizer, not aJIT

— communication and memory optimizations

— synchronization analysis (e.g. static barrier analysis)

— cache and other uniprocessor optimizations

Summary of Features Added to Java

¢ Multidimensional arrayswith iterators & copy ops

¢ Immutable (“ value”) classes

* Templates

« Operator overloading

¢ Scalable SPMD parallelism

« Global address space

¢ Checked Synchronization

¢ Zone-based memory management (regions)

¢ Support for N-dim points, rectangles & point sets

e Librariesfor collective communication, distributed
arrays, bulk 1/0, performance profiling

Outline

e Titanium Execution Model
- SPMD
— Global Synchronization
— Single
¢ Titanium Memory Model
¢ Support for Serial Programming
« Performance and Applications
« Compiler/Language Status
¢ Compiler Optimizations & Future work

SPMD Execution Model

Titanium hasthe same execution model as UPC and
CAF

Basic Java programs may berun as Titanium, but all
processors do all the work.

E.g., parallel hello world
class Hellowrld {
public static void main (String [] argv) {
Systemout. println(“Hello fromproc “ +
Ti.thisProc());
}
}
Any non-trivial program will have communication
and synchronization

SPMD Mode

« All processors start together and execute same code, but not in
lock-step
« Basic control doneusing
— Ti.numProcs() => total number of processors
— Ti.thisProc() =>id of executing processor
¢ Bulk-synchronousstyle
read all particles and conpute forces on nine
Ti.barrier();
wite to ny particles using new forces
Ti.barrier();

Thisisneither message passing nor data-parallel

Barriersand Single

Common sour ce of bugsisbarriersor other
collective operations inside branches or loops

barrier, broadcast, reduction, exchange

A “single’” method isone called by all procs
public single static void allStep(...)

A “single’ variable has same value on all procs
int single timestep = 0;

Single annotation on methodsis optional, but
useful to under standing compiler messages

Explicit Communication: Broadcast

¢ Broadcast isa one-to-all communication
broadcast <val ue> from <processor>
¢ For example:
int count = 0;
int allCount = O;
if (Ti.thisProc() == 0) count = conputeCount ();
al | Count = broadcast count fromO;
¢ The processor number in the broadcast must be
single; all constants are single.
— All processors must agree on the broadcast source.
¢ TheallCount variable could be declared single.
— All processorswill have the same value after the broadcast.

11

Example of Data I nput

Same example, but reading from keyboard

Shows use of Java exceptions
int nyCount = O;
int single allCount = 0;
if (Ti.thisProc() == 0)
try {
Dat al nput Stream kb = new
Dat al nput St ream(System in);
nyCount =
I nteger. val ue* (kb. readLine()).intValue();

} catch (Exception e) {
Systemerr. printIn("Illegal Input");

}
al | Count = broadcast nyCount fromO;

More on Single

Global synchronization needsto be controlled
if (this processor owns some data) {
compute on it
barrier
}
Hencetheuse of “ single” variablesin Titanium
If a conditional or loop block containsa barrier, all
processors must execute it
— conditions in such loops, if statements, etc. must contain only
single variables
Compiler analysis statically enfor ces freedom from
deadlocks dueto barrier and other collectives being
called non-collectively "Barrier Inference’ [Gay & Aiken]

13

Single Variable Example

« Barriersand singlein N-body Simulation
class ParticleSim {
public static void main (String [] argv) {
int single allTinestep = 0;
int single allEndTine = 100;
for (; allTimestep < allEndTine; allTinestep++){
read all particles and conpute forces on nine
Ti.barrier();
wite to ny particles using new forces
Ti.barrier();
}
}
}

« Single methodsinferred by the compiler

Outline

Titanium Execution Model

Titanium Memory Model

— Global and L ocal References

— Exchange: Building Distributed Data Structures
— Region-Based Memory Management

Support for Serial Programming
Performance and Applications
Compiler/Language Status

Compiler Optimizations & Future work

15

Global Address Space

¢ Globally shared address space is partitioned

« References (pointers) are either local or global
(meaning possibly remote)

g x5 w7 _

A Vi y:6 y:8 \ Object heaps
¢ are shared
: ET‘)L e 1)

5

3 g [¢7] (o /] Program_stacks
o are private

po pl pn

Use of Global / Local

¢ Asseen, global references (pointers) may point to
remote locations
— easy to port shared-memory programs

« Global pointersare more expensive than local

— True even when data is on the same processor

— Uselocal declarationsin critical inner loops

Costs of global:

— space (processor number + memory address)

— dereference time (check to seeif local)

May declarereferences aslocal

— Compiler will automatically infer them when possible

17

Global Address Space

* Processes allocate locally Other
« References can be passed to Process 0 processes

other processes "’ "’
class C{ int val;... } MNEE AN
C gv; /1 gl obal pointer
Clocal lv; // local pointer Iv@ |V©
if (Ti.thisProc() == 0) { o o
v = new C();
Iv- Iv
v v

gv = broadcast |v fromO;
gv.val = ...;
. = gv.val;

Shared/Private vs Global/Local

« Titanium’sglobal address spaceisbased on pointers
rather than shared variables
* Thereisnodistinction between a private and shared
heap for storing objects
— Although recent compiler analysis infers this distinction and uses it
for performing optimizations [Liblit et. al 2003]
« All objectsmay be referenced by global pointersor by
local ones
« Thereisnodirect support for distributed arrays
— Irregular problems do not map easily to distributed arrays, since
each processor will own a set of objects (sub-grids)
— For regular problems, Titanium uses pointer dereference instead of
index calculation
— Important to have local “ views’ of data structures

19

Aside on Titanium Arrays

¢ Titanium addsits own multidimensional array
classfor performance
« Digtributed data structures are built using a 1D
Titanium array
« Slightly different syntax, since Java arrays still
exist in Titanium, e.g.:
int [1d] arr;
arr = new int [1:100];
arr[1] = 4*arr[1];
« Will discussthese more later ...

Explicit Communication: Exchange

¢ Tocreate shared data structures
— each processor builds its own piece
— pieces are exchanged (for object, just exchange pointers)
¢ Exchange primitivein Titanium
int [1d] single allData;
allData = new int [O:Ti.nunProcs() -1];
al | Dat a. exchange(Ti. thisProc()*2);

« E.g., on 4 procs, each will have copy of allData:

21

Building Distributed Structures

¢ Distributed structures are built with exchange:

cl ass Boxed {

public Boxed (int j) { val =j;}
public int val;
} FO ; PT ; Pz
(a]lDala f allData f(allDa[a
AIN L LI HJ\
[uat 0 i 2

Obj ect [1d] single allData;
all Data = new Cbject [O:Ti.nunProcs() -1];
al | Dat a. exchange(new Boxed(Ti. thisProc());

Distributed Data Structures

¢ Building distributed arrays:

Particle [1d] single [1d] allParticle =

new Particle [0:Ti.nunProcs -1][1d];
Particle [1d] nyParticle =

new Particle [0:nyParticleCount -1];
al | Particle. exchange(nyParticle);

All to all broadcast
« Now each processor hasarray of pointers, oneto

each processor’s chunk of particles

e

PO P1 P2

23

Region-Based Memory Management

¢ An advantage of Java over C/C++ is:
— Automatic memory management
< But unfortunately, gar bage collection:
— Has areputation of slowing serial code
— Ishard to implement and scale in a distributed environment

« Titanium takes the following approach:
— Memory management is safe — cannot deallocate live data
— Garbage collection is used by default (most platforms)
— Higher performance is possible using region-based explicit
memory management

Region-Based Memory Management
» Need to organize data structures
* Allocate set of objects (safely)

» Delete them with a single explicit call (fast)
— David Gay's Ph.D. thesis

PrivateRegion r = new PrivateRegion();
for (int j =0; j < 10; j++) {
int[] x =new (r) int[j + 1];
work(j, x);
}
try { r.delete(); }
catch (RegionlnUse oops) {
Systemout. printin(“failed to delete”);
}
}

25

Outline

¢ Titanium Execution Model
¢ Titanium Memory Model
¢ Support for Serial Programming
— Immutables
— Operator overloading
— Multidimensional arrays
— Templates
¢ Performance and Applications
¢ Compiler/Language Status
¢ Compiler Optimizations & Future work

Java Objects

« Primitive scalar types: boolean, double, int, etc.
— implementations will store these on the program stack
— accessisfast -- comparableto other languages

¢ Objects: user-defined and standard library
— always allocated dynamically
— passed by pointer value (object sharing) into functions
— haslevel of indirection (pointer to) implicit
— simple model, but inefficient for small objects

2.6

27

Java Object Example

cl ass Conpl ex {

}

private double real;
private double inag;
publ i c Conpl ex(double r, double i) {

real =r; imag =i; }
publ i c Conpl ex add(Conpl ex c) {

return new Conplex(c.real + real, c. imag + inmag);

public double getReal { return real; }
public double getlmag { return inmag; }

Conpl ex ¢ = new Conpl ex(7.1, 4.3);
¢ = c.add(c);
class VisConpl ex extends Conmplex { ... }

Immutable Classes in Titanium

For small objects, would sometimes prefer
— toavoid level of indirection and allocation over head
— pass by value (copying of entire object)
— especially when immutable -- fields never modified
« extendstheidea of primitive valuesto user-defined datatypes
Titanium introduces immutable classes
— all fieldsareimplicitly final (constant)
— cannot inherit from or beinherited by other classes
— needsto have 0-argument constructor
Example uses:
— Complex numbers, xyz components of a field vector at a
grid cell (velocity, force)
Note: considering lang. extension to allow mutation

29

Example of Immutable Classes

— The immutable complex class nearly the same
imutabl e class Conpl ex { Zero-argument

Conpl ex () {real=0; imag=0: f constructor required
new keyword

Rest unchanged. No assignment to
fields outside of constructors.
— Use of immutable complex values
Conpl ex c¢1 = new Conpl ex(7.1, 4.3);
Conpl ex ¢2 = new Conpl ex(2.5, 9.0);
cl = cl.add(c2);
— Addresses performance and programmability
¢ Similar to C structsin terms of performance
« Allows efficient support of complex types through a
general language mechanism

Operator Overloading

« For convenience, Titanium provides operator overloading
« important for readability in scientific code
« Very similar to operator overloading in C++
« Must be used judiciously
class Conpl ex {
private double real;
private doubl e inag;
publ i c Conpl ex op+(Conplex c) {
return new Conpl ex(c.real + real,
c.imag + inag);

}

Conpl ex c1 = new Conplex(7.1, 4.3);
Conpl ex c2 = new Conpl ex(5.4, 3.9);
Conplex ¢3 = cl + c2;

31

Arraysin Java

Arraysin Java are objects
Only 1D arraysaredirectly
supported

Multidimensional arraysare
arraysof arrays

General, but sow - dueto
memory layout, difficulty of

compiler analysis, and bounds
checking

¢ Subarraysareimportant in AMR (e.g., interior
of agrid)
— Even C and C++ don’t support these well
— Hand-coding (array libraries) can confuse optimizer

Multidimensional Arraysin Titanium

« New multidimensional array added

— One array may be a subarray of another
* eg., aisinterior of b, or aisall even elementsof b

« can easily refer to rows, columns, slabs or boundary regions as
sub-arrays of alarger array

— Indexed by Points (tuples of ints)

— Constructed over arectangular set of Points, called
Rectangular Domains (RectDomains)

— Points, Domains and RectDomains are built-in
immutable classes, with handy literal syntax
* Expressive, flexible and fast
¢ Support for AMR and other grid computations
— domain operations: intersection, shrink, border
— bounds-checking can be disabled after debugging phase

33

Unordered Iteration

« Memory hierarchy optimizations ar e essential
« Compilerscan sometimesdo these, but hard in general
« Titanium adds explicitly unordered iteration over
domains
— Helpsthe compiler with loop & dependency analysis
— Simplifies bounds-checking
— Also avoids some indexing details - more concise

foreach (pinr) { ...Alp] ..}
— pisaPoint (tupleof ints) that can be used to index arrays
— risaRectDomain or Domain
« Additional operations on domainsto subset and xform

* Note: foreach isnot a parallelism construct

Point, RectDomain, Arraysin General
¢ Points specified by a tuple of ints

Point<2> |b = [1, 1];
Poi nt<2> ub = [10, 20];

« RectDomains given by 3 points:
— lower bound, upper bound (and optional stride)
Rect Domain<2> r = [Ib : ub];

¢ Array declared by num dimensions and type
doubl e [2d] a;

¢ Array created by passing RectDomain

a = new double [r];

35

Simple Array Example

e Matrix sum in Titanium
Point<2> |b = [1,1];
Poi nt <2> ub = [10,20]
Rect Domai n<2> r = [| b: ub];
double [2d] a = new double [r];
doubl e [2d] b = new double [1:10, 1: 20];
double [2d] ¢ = new double [Ib:ub: [1,1]];
for (int j =1; j <= 20; j++) -

cli,il =ali,j] + b[i,jl;
foreach(p in c.domain()) { c[p] = a[p] + b[p]; }

Naive MatMul with Titanium Arrays

public static void matMil (double [2d] a, double [2d] b,
double [2d] c) {
int n =c.domain().max()[1]; // assumes square
for (int i =0; i <n; i++) {
for (int j =0; j <n; j++) {
for (int k =0; k <n; k++) {
cli.j] +=ali,k * blkjl;
}
}

37

Example: Domain

« Domainsin general arenot rectangular

¢ Built using set operations v e s o (69
— union, + LR
— intersection, * (0.0 —e & * ¢
— difference, -

r+[1,1] @5

L, 1)—e o o o

« Exampleisred-black algorithm

Point<2> |b = [0, 0];
Point<2> ub = [6, 4];
RectDomain<2>r = [Ib : ub: [2, 2]];
i:)‘o;nain<2>red=r +(r +[1, 1]); red — (7,5
foreach (p in red) { 0fe%e%e”’
) o o .

(0,0)4,.'. o o

39

Better MatMul with Titanium Arrays

public static void matMil (double [2d] a, double [2d] b,
double [2d] c) {
foreach (ij in c.domain()) {
double [1d] aRowi = a.slice(1, ij[1]);
double [1d] bColj = b.slice(2, ij[2]);
foreach (k in aRow . domain()) {
c[ij] += aRowi [k] * bColj[K];
}
}
}

Current performance: comparableto 3 nested loopsin C

Recent upgrades: automatic blocking for memory
hierar chy (Geoff Pike's PhD thesis)

Example using Domains and foreach

¢ Gauss-Seidel red-black computation in multigrid
void gsrb() {
boundary (phi);
for (Domain<2>d =red; d != null;
d=(d==red ? black : null)) {
foreach (q in d) <=8 ynordered iteration
res[q] = ((phi[n(q)] + phi[s(q)] + phi[e(qa)] + phi[w(a)])*4
+ (phi[ne(q) + phi[nw(q)] + phi[se(q)] + phi[sw(a)])
20.0*phi[q] - k*rhs[q]) * 0.05;
foreach (q in d) phi[q] += res[q];
}
}

40

Example: A Distributed Data Structure

« Data can be accessed
acr 0ss pr ocessor
boundaries

I ocal _grids

all _grids

41

Example: Setting Boundary Conditions

foreach (I in local _grids.donain()) {
foreach (a in all_grids.domain()) {
local _grids[I].copy(all_grids[a]);

} "ghost" cells

42

Templates

« Many applications use containers:
— E.g., arrays parameterized by dimensions, element types
— Java supports thiskind of parameterization through
inheritance
« Can only put Object types into containers
« Inefficient when used extensively
¢ Titanium provides a template mechanism closer to
that of C++
— E.g. Can be instantiated with "doubl€e" or immutable class
— Used to build adistributed array package

— Hides the details of exchange, indirection within the data
structure, etc.

43

Example of Templates

tenpl ate <class El ement> class Stack {

public Element pop() {...}
public void push(Elenent arrival) {...}

list.push(1); <—— Notan object

int x = list.pop(); <«——— strongly typed, No dynamic cast

 Addresses programmability and performance

tenplate Stack<int> list = new tenplate Stack<int>();

44

Using Templates: Distributed Arrays

tenplate <class T, int single arity>
public class DistArray {
Rect Donai n <arity> single rd;
T [arity d][arity d] subMatrices;
Rect Domain <arity> [arity d] single subDonains;

/* Sets the element at p to value */
public void set (Point <arity> p, T value) {
get Homi ngSubMatrix (p) [p] = val ue;
}
}

tenplate DistArray <double, 2> single A = new tenplate
Di st Array<double, 2> ([[0,0]:[aHeight, awWdth]]);

45

SciMark Benchmark

* Numerical benchmark for Java, C/C++
— purely sequential
¢ Fivekernels:
— FFT (complex, 1D)
— Successive Over-Relaxation (SOR)
— Monte Carlo integration (MC)
— Sparse matrix multiply
— dense LU factorization
* Resultsarereported in MFlops
— We ran them through Titanium as 100% pure Java with no extensions
« Download and run on your machine from:

— http://math.nist.gov/scimark2
— C and Java sources are provided

Roldan Pozo, NIST, http:/math.nist.gov/i~Rpozo

47

Outline

« Titanium Execution Model

¢ Titanium Memory Model

¢ Support for Serial Programming

¢ Performance and Applications

— Serial Performance on pure Java (SciMark)
— Parallel Applications

— Compiler status & usability results
Compiler/Language Status

Compiler Optimizations & Future work

46

Java Compiled by Titanium Compiler

SciMark Small - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM

@ sunjdk
ibmjdk
Otc2.87

900

800

700

gee

600

500

300

200

100

Composite FFT SOR
Score

Monte Carlo ~ Sparse matmul w

—Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux

—IBM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JT) for 32-bit Linux
—Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
—gcc 3.2, -O3 (ANSI-C version of the SciMark2 benchmark)

48

Java Compiled by Titanium Compiler

SciMark Large - Linux, 1.8GHz Athlon, 256 KB L2, 1GB RAM

350 @ sunjdk
mibmidk
Otc2.87
250 mgee

Composite FFT SOR

Monte Carlo ~ Sparse matmul w
Score

—Sun JDK 1.4.1_01 (HotSpot(TM) Client VM) for Linux

—IBM J2SE 1.4.0 (Classic VM cxia32140-20020917a, jitc JT) for 32-bit Linux
—Titaniumc v2.87 for Linux, gcc 3.2 as backend compiler -O3. no bounds check
—gcc 3.2, -O3 (ANSI-C version of the SciMark2 benchmark)

49

Sequential Performance of Java

¢ Stateof theart JVM's
— often very competitive with C performance
— within 25% in wor st case, sometimes better than C
¢ Titanium compiling pure Java
— On par with best JVM'sand C performance
— Thisiswithout leveraging Titanium'slang. extensions
« Wecan try to do even better using a traditional
compilation model
— Berkeley Titanium compiler:
« Compiles Java + extensionsinto C
* No JVM, no dynamic class loading, whole program compilation
« Do not currently optimize Java array accesses (prototype)

L anguage Support for Performance

¢ Multidimensional arrays
— Contiguous storage
— Support for sub-array operations without copying
¢ Support for small objects
— E.g., complex numbers
— Called “immutables” in Titanium
— Sometimes called “value’ classes
¢ Unordered loop construct
— Programmer specifies loop iterations independent
— Eliminates need for dependence analysis (short term
solution?) Same idea used by vectorizing compilers.

51

Applications in Titanium

¢ Benchmarks and Kernels

— Fluid solvers with Adaptive Mesh Refinement (AMR)

— Scalable Poisson solver for infinite domains

— Conjugate Gradient

— 3D Multigrid

— Unstructured mesh kernel: EM3D

— Dense linear algebra: LU, MatMul

— Tree-structured n-body code

— Finite element benchmark

— SciMark serial benchmarks
¢ Larger applications

— Heart and Cochlea simulation

— Genetics: micro-array selection

— Ocean modeling with AMR (in progress)

53

Array Performance I ssues

Array representation isfast, but access methods can
be slow, e.g., bounds checking, strides

Compiler optimizesthese

— common subexpression elimination

— eliminate (or hoist) bounds checking

— strength reduce: e.g., naive code has 1 divide per dimension for
each array access

Currently +/- 20% of C/Fortran for large loops
Future: small loop and cache tiling optimizations

NAS MG in Titanium

Performance in MFlops

1600 | —=— Titanium |
1400
1200 Fortran MPI|

1000 ~
800

600 /
400
200 | —

1 2 4 8

¢ Preliminary Performance for MG code on IBM SP
— Speedups are nearly identical
— About 25% serial performance difference

Heart Simulation - Immersed Boundary Method

* Problem: compute blood flow in the heart

— Modeled as an elastic structure in an incompressible
fluid.

¢ The “immersed boundary method” [Peskin and McQueen].
« 20 years of development in model

— Many other applications: blood clotting, inner ear,

paper making, embryo growth, and more
 Can be used for design

prosthetics

— Artificia heart valves

— Cochlear implants

MOQOSE Application

¢ Problem: Genome Microarray construction
— Used for genetic experiments
— Possible medical applications long-term

« Microarray Optimal Oligo Selection Engine

(MOOSE)

— A parallel engine for selecting the best oligonucleotide
sequences for genetic microarray testing from a sequenced
genome (based on uniqueness and various structural and
chemical properties)

— First parallel implementation for solving this problem

— Uses dynamic load balancing within Titanium

— Significant memory and 1/0 demands for larger genomes

57

Error on High-Wavenumber Problem

¢ Chargeis
— 1chargeof
concentric waves
— 2 star-shaped
charges.

e Largesterroris
wherethechargeis
changing rapidly.
Note:

— discretization error
— faint decomposition
error

« Runon 16 procs

o
g
X
R
<
©

59

Simulating Fluid Flow in Biological Systems

Immersed Boundary Method
* Material (e.g., heart muscles,
cochlea structure) modeled by
grid of material points
« Fluid space modeled by a regular
lattice
Irregular material points need to
interact with regular fluid lattice
« Trade-off between load balancing
of fibers and minimizing
communication
* Memory and communication
intensive
« Includes a Navier-Stokes solver
and a 3-D FFT solver
Heart simulation is complete, Cochlea simulation is close to done
« First time that immersed boundary simulation has been done on
distributed-memory machines

« Working on a Ti library for doing other immersed boundary simulations

56

Scalable Parallel Poisson Solver

MLC for Finite-Differences by Ballsand Colella
Poisson equation with infinite boundaries

— arisein astrophysics, some biological systems, etc.
Method is scalable

— Low communication (<5%)
¢ Performanceon

+ 512512 points per processor]
= 256x256 points per processor
« 128x128 points per processor|

— SP2 (shown) and T3E R
— scaled speedups Z 400
— nearly ideal (flat) Bl B
e Currently 2D and a ;;:7ﬁ
non-adaptive 0y i i6
Processors

AMR Poisson

« Poisson Solver [Semenzato, Pike, Colella)
— 3D AMR
— finite domain
— variable
coefficients
— multigrid
acrosslevels | evel 0

+— Level 2

¢ Performance of Titanium implementation
— Sequential multigrid performance +/- 20% of Fortran
— On fixed, well-balanced problem of 8 patches, each 723
— parallel speedups of 5.5 on 8 processors

10

AMR Gas Dynamics

« Hyperbolic Solver [McCorquodale and Colella]
— Implementation of Berger-Colella algorithm
— Mesh generation algorithm included
¢ 2D Example (3D supported)

— Mach-10 shock on solid surface
at oblique angle

¢ Future: Sdlf-gravitating gas dynamics package

61

Titanium Compiler Status

¢ Titanium compiler runs on amost any machine
— Requires a C compiler (and decent C++ to compile trandlator)
— Pthreads for shared memory
— Communication layer for distributed memory (or hybrid)
« Recently moved to live on GASNet: shared with UPC
« Obtained Myrinet, Quadrics, and improved LAPI implementation
« Recent language extensions
— Indexed array copy (scatter/gather style)
— Non-blocking array copy under development
¢ Compiler optimizations
— Cache optimizations, for loop optimizations
— Communication optimizations for overlap, pipelining, and
scatter/gather under development

63

Outline

¢ Titanium Execution Model

¢ Titanium Memory Model

¢ Support for Serial Programming

¢ Performance and Applications

¢ Compiler/Language Status

¢ Compiler Optimizations & Future work

I mplementation Portability Status

« Titanium hasbeen tested on:
— POSIX-compliant workstations & SMPs Automatic portability:
— Clusters of uniprocessors or SMPs Titanium applications run

- Cray T3E on all of these!

- IBMSP Very important productivity
— SGI Origin 2000 feature for debugging &

— Compaq AlphaServer development

— MS Windows/GNU Cygwin

— and others...

« Supports many communication layers
— High performance networking layers:
« IBM/LAPI, Myrinet/GM, Quadrics/Elan, Cray/shmem, Infiniband (soon)
— Portable communication layers:
« MPI-1.1, TCP/IP (UDP)

http://titanium.cs.berkeley.edu

Programmability

¢ Heart simulation developed in ~1 year
— Extended to support 2D structures for Cochlea model in ~1 month
¢ Preliminary code length measures
— Simple torus model
« Serial Fortran torus code is 17045 lines long (2/3 comments)
« Parallel Titanium torus version is 3057 lines long.
— Full heart model
« Shared memory Fortran heart code is 8187 lines long
« Parallel Titanium version is 4249 lines long.

— Need to be analyzed more carefully, but not a significant overhead
for distributed memory parallelism

65

Robustness
¢ Robustness is the primary motivation for language “ safety”
in Java
— Type-safe, array bounds checked, auto memory management
— Study on C++ vs. Java from Phipps at Spirus:
« C++ has 2-3x more bugs per line than Java
« Javahad 30-200% more lines of code per minute
¢ Extended in Titanium
— Checked synchronization avoids barrier/collective deadlocks
— More abstract array indexing, retains bounds checking
« No attempt to quantify benefit of safety for Titanium yet
— Would like to measure speed of error detection (compile time,
runtime exceptions, etc.)

— Anecdotal evidence suggests the language safety features are very
useful in application debugging and development

11

Calling Other Languages

* We have built interfaces to
— PETSc : scientific library for finite element applications
— Metis: graph partitioning library
— KeLP: scientific C++ library
« Two issueswith cross-language calls
— accessing Titanium data structures (arrays) from C
« possible because Titanium arrays have same format on inside
— having a common message layer
« Titanium is built on lightweight communication

67

Outline

« Titanium Execution Model

¢ Titanium Memory Model

¢ Support for Serial Programming
« Performance and Applications

¢ Compiler/Language Status

¢ Compiler Optimizations & Futurework
— Local pointer identification (LQI)
— Communication optimizations
— Feedback-directed search-based optimizations

Local Pointer Analysis
¢ Global pointer accessismore expensive than local
¢ Compiler analysis can frequently infer that a
given global pointer always pointslocally
— Replace global pointer with alocal one
— Local Qualification Inference (LQI) [Liblit]
— Data structures must be well partitioned

Effect of LQI

Same idea can be
applied to UPC's H
pointer-to-shared... g

Communication Optimizations

« Possible communication optimizations

«Communication overlap, aggregation, caching

« Effectiveness varies by machine

*Generally pays to target low-level network API

25 E Added Latency
20 4 Send Overhead (Alone)
B Send & Rec Overhead
§15 O Rec Overhead (Alone)
3

ol =
S & & SRS » & @480
X Mo @;@i&‘}g « ? S

[Bell, Bonachea et al] at IPDPS03

Split-C Experience: Latency Overlap

Titanium borrowed ideas from Split-C
— global address space
— SPMD parallelism
But, Split-C had explicit non-blocking accesses built in to
tolerate network latency on remote read/write
int *global p;

X 1= *p; /1* get */

p 1= 3; /I put */

sync; /* wait for my puts/gets */
Also one-way communication

poi-oX; / store */

all _store_sync; /* wait globally */

Conclusion: useful, but complicated

71

Titanium: Consistency Model

Titanium adopts the Java memory consistency model
Roughly: Accessto shared variablesthat are not
synchronized have undefined behavior

Use synchronization to control accessto shared
variables

— barriers

— synchronized methods and blocks

Open question: Can we leverage therelaxed
consistency model to automate communication overlap
optimizations?

— difficulty of alias analysisis a significant problem

12

Sources of Memory/Comm. Overlap

* Would like compiler to introduce put/get/store
* Hardwarealso reorders
— out-of-order execution
— write buffered with read by-pass
— non-FIFO write buffers
— weak memory models in general
Softwar e already reor derstoo
— register alocation
— any code motion
« System provides enforcement primitives
— e.g., memory fence, volatile, etc.
— tend to be heavyweight and have unpredictable performance
« Open question: Can the compiler hide all this?

73

Feedback-directed search-based
optimization

» Use machines, not humans for architecture-
specific tuning
— Code generation + search-based selection
« Can adapt to cache size, # registers, network buffering
— Usedin
« Signal processing: FFTW, SPIRAL, UHFFT
« Dense linear algebra: Atlas, PHIPAC
« Sparselinear algebra: Sparsity
« Rectangular grid-based computations: Titanium compiler

— Cache tiling optimizations - automated search for best tiling
parameters for a given architecture

Current Work & Future Plans

Unified communication layer with UPC: GASNet
Exploring communication overlap optimizations

— Explicit (programmer-controlled) and automated

— Optimize regular and irregular communication patterns
Analysis and refinement of cache optimizations

— along with other sequential optimization improvements
Additional language support for unstructured grids

— arrays over genera domains, with multiple values per grid point
Continued work on existing and new applications

http://titanium.cs.berkeley.edu

75

13

