Adaptive Mesh Refinement
INn Titanium
Tong Wen & Phillip Colella

Lawrence Berkeley National Laboratory
April 7, 2005

NN
19" IPDPS, April 7, 2005 1 Tong Wen & Phillip Colella i%

-
Overview

e Motivations:

 Build the infrastructure in Titanium for applications of
adaptive mesh refinement (AMR)

* Provide a nontrivial case study of Titanium’s usability
(development and execution productivity)

L[}

19" IPDPS, April 7, 2005 2 Tong Wen & Phillip Colella m

N
The Titanium Language:

a Java Dialect for Scientific computing

« A high-level language designed to simplify parallel
programming, meanwhile to provide high performance

e Features:
 Global address space and explicit SPMD execution model
 Multidimensional rectangular arrays
 One-sided communication
e Templates
« Immutable (value) classes
« Zone-based memory management

e Titanium programs run on both shared-memory and
distributed-memory architectures

19" IPDPS, April 7, 2005 3 Tong Wen & Phillip Colella m

e
AMR for Partial Differential Equations

(PDEs)

A variety of physical problems exhibit multiscale behavior, in the
form of localized large gradients separated by large regions where
the solution is relatively smoother

In adaptive methods, one adjusts the computational effort locally to
maintain a uniform level of accuracy throughout the problem domain

The goal of local refinement is to save computational resources

rrrrrrrrrr

- . —
19t IPDPS, April 7, 2005 4 Tong Wen & Phillip Colella _

e
Implementing Block-Structured AMR

Algorithms is Challenging

« Simplicity is traded for |
computational resources] e
inAMR L AR O N S N T W

« Mixture of regqularand | _________ _________ 0 _________
irregular data accessand | . ® olesiinkiil foeee
computation @ o[® " o le

« Dealing with all kindsof | O || olmeegnats
boundaries is the source of BB E -
irregular operations | 0 e B -

« Once the ghost valuesare |
determined, evaluatingany | S

finite difference scheme on
each grid is a local operation

@ regularcell
® ghost cell at CF interface
® ghost cell at physical boundary

19t IPDPS, April 7, 2005 5 Tong Wen & Phillip Colella

~
A
rrrrrrr m‘

e
Implementing Block-Structured AMR

Algorithms is Challenging

e Also complicated are the control structures and
Interactions between levels of refinement

* In real applications, grid configuration is not
known until run time, and it may change from
time to time

NN
19" IPDPS, April 7, 2005 6 Tong Wen & Phillip Colella m

O
A Prototype of AMR In Titanium

Chombo
Chombo is a widely used AMR

package written in C++/Fortran
with MPI:

o C++: complicated data structures

and irregular computations

« Fortran: evaluation of operations

on rectangular arrays

Bulk-synchronous
communication:

« Communicate boundary data for

all grids at a level

 Perform local calculation on each

grid in parallel

19 IPDPS, April 7, 2005

Titanium AMR

Follow the design of Chombo
with modifications to suit
Titanium

» Basic AMR data structures and
operations

e A solver for elliptic PDEs
Fully written in Titanium (no
Fortran/C, no MPI)

Our implementation has
covered almost all Titanium’s
features

Tong Wen & Phillip Colella

O
A Prototype of AMR In Titanium

e Basic data structures for AMR applications:
 The metadata class and the data class

 Basic AMR operations implemented as methods
of classes:

* Exchange values along the grid boundaries at the same
refinement level (Exchange)

« Quadratic interpolation of the boundary values at the
coarse-fine interface (CFlInterpl&?2)

A solver for elliptic PDEs is built on the above
Infrastructure
e Point relaxation scheme (GSRB)

NN
19" IPDPS, April 7, 2005 8 Tong Wen & Phillip Colella m

Titanium VS. C++/Fortran/MPI:

Lines of Code
* Numbers of lines of code:

Titanium | C++/Fortran/MPI

AMR data structures 2000 35000
AMR operations 1200 6500
elliptic PDE solver 1500 4200*

*more functionalities are implemented in Chombo

« Why are numbers of lines smaller for Titanium?

* Functionality that has to be implemented as libraries in
Chombo is supported at language level in Titanium

19" IPDPS, April 7, 2005 9 Tong Wen & Phillip Colella m

5
Two Test Problems

configurat

e

the small configuration the large configuration
level | #of grids | # of cells | level | # of grids | # of cells
0 1 33K 0 64 2M |
1 106 280K 1 129 3M
2 1449 3M 2 3159 62M
19t IPDPS, April 7, 2005 10 Tong Wen & Phillip Colella

ons (3D Vortex Ring problem)
||

Y s,

Solving Poisson’s equation with two grid

~

A
rreeeer |m
_

-
Serial Performance

e The same version of e On the Intel Pentium 4
code is run on two workstation, the small
platforms: test problem:

1. An Intel Pentium 4
workstation (the timing results are in seconds)
i St ; Titanium AMR | Chombo
2. _?ealgg(r)gl._ t?e 21%%n AMRSolve 52.15 57.47
op IS GSRB 298| 1164

« The Titanium compiler Exchange 1125| 17.31

we used is version 2.573 CF Interp1 591 4.19
CFlnterp2 4.97 4.31

other 17.04 20.02
19t IPDPS, April 7, 2005 11 Tong Wen & Phillip Colella

-
Parallel Performance

The scalability of the small test problem on Seaborg (32 bit):

the scalability of AM RSoive lhe scalability of GSRB and Exchange
| § e — ! 10+
Bl AMRSalve g | "B GsRB
al = Exchange
7L
at
6l
= |
55 8 o
3 G *©
N i
[= T
Qs =8
D 3
3 g
D3t @
3l
2! "
2!
el Cd
»* ’,'
| | Il
al
o~ 1 2
1 2 number of processors

number of processors

(the timing results are in seconds)

of processors 1 2 4 6 8
AMRSolve 138.4 | 74.63 | 39.31 | 26.90 | 20.62
GSRB 3385|1711 | 838 | 521 | 357

Exchange 2766 | 1426 | 812 | 545 | 411
CFlinterp1 1433 | 7.13 | 288 | 1.51 1.00
CFlInterp2 1527 | 9.33 | 490 | 3.41 2.89

Other 47.29 | 26.80 | 15.03 | 11.32 | 9.05

L[}

19" IPDPS, April 7, 2005 12 Tong Wen & Phillip Colella m

-
Parallel Performance

« Scalability of the large test problem on Seaborg (64-bit):

(the timing results are in seconds)
of processors 14 28 42
AMRSolve 204.7 | 134.6 | 116.7

GSRB 58.39 | 29.46 | 19.18
Exchange 42.60 | 41.32 | 46.23
CFlinterp1 10.05 | 520 | 3.78
CFlInterp2 12.53 | 10.03 | 9.87

other 81.13 | 48.59 | 37.64

 Note that the source and destination regions of Exchange operation
are non-contiguous in linear storage

 Possible improvements to reduce the communication cost:
« Packing at application level
» More efficient packing in the GASNet communication system

19" IPDPS, April 7, 2005 13 Tong Wen & Phillip Colella m

-
Parallel Performance

e Titanium vs. C++/Fortran/MPI on the large test problem
on Seaborg, where two nodes (28 processors) are used.

(the timing results are in seconds)

Titanium AMR | Chombo

AMRSolve 130.0 113.3
GSRB 25.34 22.71

Exchange 40.56 37.12
CFlnterp1 5.15 6.17
CFlinterp2 10.10 7.97
other 48.85 40.33

19t IPDPS, April 7, 2005 14 Tong Wen & Phillip Colella

-
Conclusion and Future Work

e Titanium'’s strength:
« A high-level language that is easy to learn and easy to use

« Writing AMR applications in Titanium requires much less programming
effort

« Potential to provide high performance

 Continuing improvements to Titanium are motivated by
this project:
* A recent change in Titanium compiler has provided an average of 10%
speedup of our test code
e Future work:
* Improve the performance of AMR Exchange
« A performance model of Titanium AMR would be interesting

« New AMR development: ocean modeling (solvers for large aspect
ratio grids)

19" IPDPS, April 7, 2005 15 Tong Wen & Phillip Colella m

e
Acknowledgements

 This project is supported by Lawrence Berkeley
National Laboratory

 Our thanks go to

o Titanium group at University of California, Berkeley
Dan Bonachea, Jimmy Su, and Amir Kamil

 ANAG group at Lawrence Berkeley National Laboratory
Dan Martin and Noel Keen
e« Our emails:

twen@Ibl.gov and pcolella@lbl.gov
e URLSs:

1. http://seesar.Ibl.gov/anag/staff/wen/download.html
2. http://seesar.lbl.gov/ANAG/software.html

19t IPDPS, April 7, 2005 16 Tong Wen & Phillip Colella

~
A
rrrrrrr m‘

O
Appendix

 The infinity norms of the residuals from the two test
problems:

L[}

19 IPDPS, April 7, 2005

17

the small test problem the large test problem
Titanium Titanium
iteration AMR Chombo Iteration AMR Chombo
initial 6144.0 6144.0 Initial 9.830E04 9.830E04
1 0.2727 0.2728 1 4.169 4.169
2 0.2538 0.2538 2 1.290 1.277
3 0.0091 0.0092 3 0.0222 0.0219
3 3.706E-04 | 3.580E-04 4 1.046E-03 | 1.039E-03
5 5.093E-06 | 4.748E-06 5 1.761E-05| 2.218E-05
6 2.090E-07 | 1.570E-07 6 7.839E-07 | 7.367E-07

Tong Wen & Phillip Colella

\
\
rr Hl‘

