
 Automatic Communication Performance Debugging in PGAS

Languages

 Jimmy Su
1
 and Katherine Yelick

1,2

1 Computer Science Division, University of California at Berkeley

2 Lawrence Berkeley National Laboratory

{jimmysu, yelick}@cs.berkeley.edu

Abstract. Recent studies have shown that programming in a Partition Global

Address Space (PGAS) language can be more productive than programming in

a message passing model. One reason for this is the ability to access remote

memory implicitly through shared memory reads and writes. But this benefit

does not come without a cost. It is very difficult to spot communication by

looking at the program text, since remote reads and writes look exactly the

same as local reads and writes. This makes manual communication

performance debugging an arduous task. In this paper, we describe a tool

called ti-trend-prof that can do automatic performance debugging using

only program traces from small processor configurations and small input sizes

in Titanium [13], a PGAS language. ti-trend-prof presents trends to the

programmer to help spot possible communication performance bugs even for

processor configurations and input sizes that have not been run. We used ti-

trend-prof on two of the largest Titanium applications and found bugs that

would have taken days in under an hour.

Keywords: PGAS languages, automatic performance debugging

1 Introduction

Titanium is a Partitioned Global Address Space language. It combines the

programming convenience of shared memory with the locality and performance

control of message passing. In Titanium, a thread running on one processor can

directly read or write the memory associated with another. This feature significantly

increases programmer productivity, since the programmer does not need to write

explicit communication calls as in the message passing model. Unfortunately, this is

also a significant source of performance bugs. Many unintended small remote reads

and writes go undetected during manual code audits, because they look exactly the

same as local reads and writes in the program text. Furthermore, these performance

bugs often do not manifest themselves until the program is run with large processor

configurations and/or large input sizes. This means the bugs are caught much later

in the development cycle, making them more expensive to fix.

In this paper, we describe an automatic communication performance debugging

tool for Titanium that can catch this type of bugs using only program runs with small

processor configurations and small input sizes. Trends on the number of

communication calls are presented to the programmer for each location in the source

code that incurred communication during the program runs. Each trend is modeled

by a linear function or a power law function in terms of the number of processors or

the input problem size. The models can be used to predict communication

performance bottlenecks for processor configurations and problem sizes that have not

yet been run. We used the debugging tool on two of the largest Titanium

applications and report the bugs that were found using the tool.

2 Motivating Example

To illustrate the difficulty of manual performance debugging in a PGAS language like

Titanium, we will use a simple sum reduction example in this section. Processor 0

owns a double array. We would like to compute the sum of every element in the

array. To spread the workload among the processors, each processor gets a piece of

the array and computes the sum for that part. At the end, the partial sums are added

together using a reduction.

Two versions of the code are shown in Figure 1 and Figure 2. The code in Figure

1 has a performance bug in it. The two versions are identical except for two lines of

code. The loop that computes the actual sum is identical. In the buggy version,

each processor only has a pointer to the array on processor 0.

array.restrict(myPart) returns a pointer to a subsection of array that

contains elements from startIndex to endIndex. Each dereference in the

foreach loop results in communication to processor 0 to retrieve the value at that array

index. Processor 0 becomes the communication bottleneck as all other processors

are retrieving values from it.

1 double [1d] array;

2 if (Ti.thisProc() == 0){

3 array = new double[0:999];

4 }

5 array = broadcast array from 0;

6 int workload = 1000 / Ti.numProcs();

7 if (Ti.thisProc() < 1000 % Ti.numProcs()){

8 workload++;

9 }

10 int startIndex = Ti.thisProc() * workload;

11 int endIndex = startIndex + workload - 1;

12 RectDomain<1> myPart = [startIndex:endIndex];

13 double [1d] localArray = array.restrict(myPart);

14 double mySum = 0;

15 double sum;

16

17 foreach (p in localArray.domain()) {

18 mySum += localArray[p];

19 }

20 sum = Reduce.add(mySum, 0);

Fig. 1. Sum reduction example with performance bug in it (Version 1)

12 RectDomain<1> myPart = [startIndex:endIndex];

13 double [1d] localArray = new double[myPart];

14 localArray.copy(array.restrict(myPart));

15 double mySum = 0;

16 double sum;

17

18 foreach (p in localArray.domain()) {

19 mySum += localArray[p];

20 }

21

22 sum = Reduce.add(mySum, 0);

Fig. 2. Sum reduction example without the performance bug (Version 2)

Figure 2 shows the version without the performance bug in it. Each processor

first allocates space for the localArray, then it retrieves the part of array that it

needs into localArray using one array copy call. The array copy results in one

bulk get communication. The subsequent dereferences inside the loop are all local.

Although this is a very simple example, this kind of communication pattern is quite

common, especially in the initialization phase of a parallel program, where processor

0 typically processes the input before distributing the workload to the rest of the

processors. It is difficult to catch this type of bugs manually in Titanium, since the

two versions of the program look very similar. For small processor configurations,

the performance degradation may not be noticeable given that the initialization is run

only once.

We would like a tool that can alert the programmer to possible performance bugs

automatically earlier in the development cycle, when we are only testing the program

with small processor configurations and small input sizes. For this example, the

number of communication calls at the array dereference in the buggy version can be

expressed as (1-1/p)*size, where p is the number of processors and size is the

size of the array. If we fix the array size at 1000 elements, then we can see that the

number of communication calls at the array dereference varies with the number of

processors as in Figure 3. The graph shows the actual observed communication calls

at the array dereference for 2, 4, and 8 processors along with the predicted curves for

both versions of the code.

Fig. 3. The number of communication calls at the array dereference is expressed in terms of the

number of processors for a fixed array size of 1000 elements for both versions of the program.

The X axis is the number of processors, and the Y axis is the number of communication calls.

Version 1 is clearly not scalable. For larger array sizes, the gap between version 1 and version

2 would widen.

In the rest of this paper, we will describe a tool called ti-trend-prof that can

present communication trends automatically given only program traces for small

processor configurations and/or small input sizes.

3 Background

Before getting into the details of ti-trend-prof, we will give the necessary

background information in this section. This includes brief introductions on

Titanium, GASNet trace, and trend-prof.

3.1 Titanium

Titanium is a dialect of Java, but does not use the Java Virtual Machine model.

Instead, the end target is assembly code. For portability, Titanium is first translated

into C and then compiled into an executable. In addition to generating C code to run

on each processor, the compiler generates calls to a runtime layer based on GASNet

[2], a lightweight communication layer that exploits hardware support for direct

remote reads and writes when possible. Titanium runs on a wide range of platforms

including uniprocessors, shared memory machines, distributed-memory clusters of

uniprocessors or SMPs (CLUMPS), and a number of specific supercomputer

architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Origin 2000, and NEC SX6).

Titanium is a single program, multiple data (SPMD) language, so all threads

execute the same code image. A thread running on one processor can directly read

or write the memory associated with another. This feature significantly increases

programmer productivity, since the programmer does not need to write explicit

communication calls as in the message passing model.

3.2 GASNet Trace

Titanium's GASNet backends include features that can be used to trace

communication using the GASNet trace tool. When a Titanium program is compiled

with GASNet trace enabled, a communication log is kept for each run of the program.

In this communication log, each communication event along with the source code line

number is recorded.

3.3 trend-prof

trend-prof [7] is a tool developed by Goldsmith, Aiken, and Wilkerson for

measuring empirical computational complexity of programs. It constructs models of

empirical computational complexity that predict how many times each basic block in

a program runs as a linear or a power law function of user-specified features of the

program’s workloads. An example feature can be the size of the input. It was

previously used on sequential programs for performance debugging.

4 Bug Types

In parallel programming, there are many causes for communication performance bugs.

This includes excessive amount of communication calls, excessive volume of

communication, and load imbalance. Our work so far in ti-trend-prof has

been focused on finding the first type of bugs automatically. Our framework can be

extended to address the other two types of bugs. In Titanium, there are two main

causes for excessive amount of communication calls:

1. Remote pointer dereference

2. Distribution of global meta-data

The first case can come up in two situations. One is when a processor has a

shallow copy of an object that contains remote references in its fields. Even though

the object is in local memory, accessing its field that contains remote reference would

result in a round trip of small messages to a remote processor. If the field is

accessed frequently during program execution, it can significantly degrade

performance. The second situation comes up during workload distribution among

processors. In parallel program, it is often the case that one processor does I/O

during initialization, and then the workload is distributed among all processors. The

motivating example in Section 2 fits this description.

The second case comes from distribution of global meta-data. In parallel

programs, it is often desirable to have global meta-data available to each processor so

that it can find remote objects by following pointers. Each processor owns a list of

objects. A naïve way of programming the distribution of meta-data is by

broadcasting each pointer individually. This performance bug would not be

noticeable when the number of objects is small. Only a large problem size would

expose this problem, which is likely to be much later in the development cycle.

In the experimental section, we will show that these types of performance bugs

exist in two of the largest Titanium applications written by experienced programmers,

and ti-trend-prof allowed us to find the bugs automatically within an hour

instead of days through manual debugging.

4 ti-trend-prof

In this work, a new tool called ti-trend-prof is developed to combine the use of

GASNet trace and trend-prof to do communication performance debugging for

parallel programs. ti-trend-prof takes GASNet trace outputs for small

processor configurations and/or small input sizes, and feeds them to a modified

version of trend-prof that can parse GASNet trace outputs. The output is a table

of trends per Titanium source code location that incurred communication for the input

traces.

The number of processors and the input problem size can be used as features. The

linear function a + bx and the standard power law function with offset a + bx^c

are used to model the trend at each source code location. The function which

minimizes error is picked to be the model. For example, if we fixed the problem

size and varied the number of processors, then the trend would tell us how does the

number of communication calls change at this location as we vary the number of

processors. Similarly, if we fixed the number of processors and varied the problem

size, then the trend would tell us how does the number of communication calls change

as we vary the problem size. These trends can be used to predict communication

performance bottlenecks for processor configurations and input sizes that we have not

run yet. This is particularly useful in the beginning of the development cycle, where

we do most of the testing on small processor configurations and small inputs. In the

table, the trends are first ranked by the exponent, then by the coefficient. Larger

values are placed earlier in the table. The goal is to display trends that are least

scalable first to the programmer.

In practice, many of the communication patterns can be modeled by the linear

function or the power law function. But there are algorithms that do not fall into this

category, such as a tree based algorithms or algorithms that change behavior based on

the number of processors used. We don’t intend to use the linear or power law

trends as the exact prediction in communication calls, but rather as an indicator for

possible performance bugs. For example, if the number of communication calls at a

location is exponential in terms of the number of processors, then ti-trend-prof

would output a power law function with a large exponent. Although this does not

match the actual exponential behavior, it would surely be presented early in the output

to alert the programmer.

5 Experimental Results

In this section, we show the experimental results on running ti-trend-prof on

two large Titanium applications: heart simulation [6] and AMR [12]. To obtain the

GASNet trace files, the programs were run on a cluster, where each node has a dual

core Opteron. We used both cores during the runs. This means that intra-node

communication is through shared memory, which does not contribute to

communication calls in the GASNet trace counts.

5.1 Heart Simulation

The heart simulation code is one of the largest Titanium applications written today.

It has over 10000 lines of code developed over 6 years. As the application matures,

the focus has been on scaling the code to larger processor configurations and larger

problem sizes. The initialization code has remained largely unchanged over the

years. Correctness in the initialization code is crucial. But we have not done much

performance tuning on the initialization code, since it is run only once in the

beginning of execution.

Recently, we had scaled the heart simulation up to 512 processors on a 512^3

problem. On our initial runs, the simulation never got passed the initialization phase

after more than 4 hours on the 512 processors. The culprit is in the following lines

of code.

// missing immutable keyword

class FiberDescriptor{

 public long filepos;

 public double minx, maxx, miny, maxy, minz, maxz;

 ...

}

/* globalFibersArray and the elements in it live on

processor 0 */

FiberDescriptor [1d] globalFibersArray;

FiberDescriptor [1d] local localFibersArray;

...

localFibersArray.copy(globalFibersArray);

foreach (p in localFibersArray.domain()){

 FiberDescriptor fd = localFibersArray[p];

 /* Determine if fd belongs to this processor by

examining the fields of fd */

 ...

}

Fig. 4. Fiber distribution code containing a performance bug due to lack of immutable keyword

The programmer meant to add the “immutable” keyword to the declaration for

the FiberDescriptor class. But the keyword was missing. Immutable classes

extend the notion of Java primitive type to classes. For this example, if the

FiberDescriptor were immutable, then the array copy prior to the foreach loop

would copy every element in the globalFibersArray to the

localFibersArray including the fields of each element. Without the

“immutable” keyword, each processor only contains an array of pointers in

localFibersArray to FiberDescriptor objects that live on processor 0.

When each processor other than processor 0 accesses the fields of a

FiberDescriptor object, a request and reply message would occur between the

processor accessing the field and processor 0. This performance bug is hard to find

manually because the source of the bug and the place where the problem is observed

are far from each other.

When the processor configuration is small and the number of

FiberDescriptor objects is small, the effects of this performance bug are hardly

observable. Only when we start scaling the application over 100 processors on the

512^3 problem did we notice the problem. The size of the globalFibersArray

grows proportionately to the problem size of the input. As we increase the number

of processors for the same size problem, the number of field accesses to

FiberDescriptor objects increases linearly. Each processor reads through the

entire array to see which fiber belongs to it. Every field access to a

FiberDescriptor object results in messages to processor 0. At large processor

configurations and large problem sizes, the flood of small messages to and from

processor 0 becomes the performance bottleneck.

ti-trend-prof can catch this bug earlier in the development cycle using only

program runs from small processor configurations and small input sizes. It presents

the trends in the communication performance both in terms of the number of

processors and the input size. Trends are presented for each location in the source

code that incurred communication as reflected in the GASNet traces. For a large

application such as the heart code, there are many places in the program where

communication occurs. In order to present the most interesting results to the user

first, trends are sorted first by the exponent followed by the coefficients. Large

values get placed earlier in the table. This allows users to see the least scalable

locations predicted by the trends first.

Table 1. Trends output from ti-trend-prof for the heart simulation given the GASNet

traces for the 128^3 size problem on 4, 8, 16 and 32 processors

Location Operation Feature Max

FFTfast.ti 8727 Get 41p^2 - 416 198400

FFTfast.ti 8035 Put 41p^2 – 416 198400

MyMailBox.ti 384 Put 9p^2 - 789 404120

MetisDistributor.ti 1537 Get 304690p – 1389867 18330567

FluidSlab.ti 3685 Put 200p 12800

FluidSlab.ti 3725 Put 200p 12800

Table 1 shows the trends presented by ti-trend-prof given GASNet traces

for the heart code on 4, 8, 16, and 32 processors for the 128^3 problem. The trend

for the performance bug is in red. The trend shows that the number of get calls on

line 1537 in the MetisDistributor file is a linear function with a large coefficient.

This clearly alarms the programmer since the number of communication calls should

be zero at this location if the “immutable” keyword were not missing. Figure 5

shows the power law model for the buggy line along with observed data.

Fig. 5. Graph of the power law function generated by ti-trend-prof for the

buggy line along with actual observations of communication counts. The X axis is

the number of processors, and the Y axis is the count of communication calls.

ti-trend-prof can find this same bug in another way. Figure 6 shows the

trend when given GASNet traces for the 32^3, 64^3, and 128^3 size problems on 8

processors. The trend for the performance bug location in terms of the input size

also clearly indicates that there is a performance bug here. The number of get calls

grows super linearly with the problem size. If the “immutable” keyword were there,

there should not be any communication calls for this location.

Fig. 6. Graph of the power law function generated by ti-trend-prof for the buggy line

along with actual observations of communication counts. The X axis is the dimension length

of the input problem, (dimension length)^3 gives us the input problem size. The Y axis is the

communication count.

We also note that not all trends presented by trend-prof are performance bugs.

For example, the first trend presented in Table 1 represents the communication pattern

during the global transpose in the FFT. The global transpose uses an all to all

communication pattern, which makes the number of communication calls grow as the

square of the number of processors. The trend presented by trend-prof confirms

this.

5.2 Adaptive Mesh Refinement

Adaptive Mesh Refinement (AMR) is another large Titanium application. AMR is

used for numerical modeling of various physical problems which exhibit multiscale

behavior. At each level of refinement, rectangular grids are divided into boxes

distributed among processors. Using ti-trend-prof, we were able to find two

performance bugs in AMR, where one was known prior from manual debugging and

the other was not found previously.

5.2.1 Excessive Use of Broadcasts

The first bug appears in the meta-data set up of the boxes at each refinement level.

Boxes are distributed among all the processors. But each processor needs to have

the meta-data to find neighboring boxes that may live on another processor. Figure

7 shows the code for setting up the meta-data. Instead of using array copies to copy

the array of pointers from each processor, it uses one broadcast per box to set up the

global box array TA. For a fixed size problem, the number of broadcasts due to the

code in Figure 7 is the same regardless of the number of processors. But each

processor must wait for the broadcast value to arrive if the broadcast originates from a

remote processor. As more processors are added for the fixed size problem, more of

the values come from remote processors. Subsequently, each processor performs

more waits at the barrier as the number of processors increases, and the total number

of wait calls sum over all processors increases linearly as shown in Figure 8. If array

copies were used, the number of communication calls should only increase by 2p-1

when we add one more processor.

/* Meta-data set up*/

for (k=0;k<m_numOfProcs;k++)

 for (j=0;j<(int single)m_layout.numBoxesAt(k);j++)

 TA[k][j]=broadcast TA[k][j] from k;

 Fig. 7. Fiber distribution code containing a performance bug due to lack of immutable

keyword

Figure 8 shows the trend presented by ti-trend-prof given the GASNet

traces for 2, 4, 6, and 8 processors for the 128^3 problem. It clearly indicates to the

programmer that the increase in number of communication calls is larger than

expected. Prior to the development of ti-trend-prof, it took three

programmers to find this bug manually in four days. Similar to the bug in the heart

code, the bug was caught late in the development cycle. This performance bug did

not become noticeable until we ran the code beyond 100 processors.

Fig. 8. Graph of the power law function generated by ti-trend-prof for the excessive

broadcast along with actual observations of communication counts. Each processor must wait

at the broadcast if the broadcast originates from a remote processor. As the number of

processor increases for a fixed size problem, more of the broadcast values come from remote

processors.

5.2.2 Shallow Copy of Meta-data

After the set up of meta-data, each processor only has a pointer to boxes that live

remotely. Whenever it needs to perform operations on the underlying array for the

box, it needs to call an accessor method for the box, which incurs communication if

the box is remote. The number of calls that require communication increases with

the number of processors, because more neighboring boxes become remote as

processors are added. ti-trend-prof reports that the number of communication

calls resulting from the accessor method grows almost as the square of the number of

processors. If we had a deeper copy of the meta-pointer, which includes the caching

of the pointer to the underlying array, we would avoid a majority of the

communication calls at the accessor method. The meta-data for the boxes are reused

over many iterations. This bug was not found previous through manual performance

debugging.

6 Related Work

There has been vast amount of work in the area of performance debugging in both

sequential programs and parallel programs. For sequential programs, gprof [8] is a

widely used tool for estimating how much time is spent in each function. Gprof

samples the program counter during a single run of the program. Then it uses these

samples to propagate back to the call graph during post processing. The key

difference is that we use multiple runs of the program to come up with trends that can

predict performance problems for processor configurations and/or problem sizes that

have not been run. Gprof only gives performance information for a single run of the

program.

Kluge et al. [9] focus specifically on how the time a MPI program spends

communicating scales with the number of processors. They fit these observations to

a degree two polynomial, finding a, b, and c to fit y = a+bx+cx^2. Any part of

the program with a large value for c is said to parallelize badly. Our work differs in

that we can use both the number of processors and the input size as features to predict

performance. We have used our tool on large real applications. The experiment in

[9] only shows data from a Sweep3D benchmark on a single node SMP. Their

technique is likely to have much worst errors when used on a cluster of SMPs. They

are modeling MPI time, which would be affected by how many processors are used

within a node to run MPI. All processors within a node share resource in

communication with other nodes. Furthermore, our target programs are written in a

PGAS language instead of MPI, which are much harder to find communication

locations manually by looking at the program text.

Vetter and Worley [11] develop a technique called performance assertions that

allows users to assert performance expectations explicitly in their source code. As the

application executes, each performance assertion in the application collects data

implicitly to verify the assertion. In contrast, ti-trend-prof does not require

additional work from the user to add annotations. Furthermore, it may not be

obvious to the programmer as to which code segment should have performance

assertions. ti-trend-prof found performance bugs in code segments where the

user didn’t think was performance critical. But those performance bugs severely

degrade performance only on large processor configurations and large problem sizes,

and ti-trend-prof helps the user to identify them by presenting the trends.

Coarfa et al. [4] develop the technique for identifying scalability bottlenecks in

SPMD programs by identifying parts of the program that deviates from ideal scaling.

In strong scaling, linear speedup is expected. And in weak scaling, constant

execution time is expected. Call path profiles are collected for two or more

executions on different numbers of processors. Parts of the program that do not

meet the scaling expectations are identified for the user.

Brewer [3] constructs models to predict performance of a library function

implementation as a function of problem parameters. The parameters are supplied

by the user. For example, the radix width can be a parameter for an implementation

of the radix sort algorithm. Based on those parameters, the tool picks the

implementation that the model predicts to be the best. Our tool does not require the

user to have the knowledge to supply such parameters.

There are also vast amount of work based on the LogP [5] technique. In

particular, Rugina and Schauser [10] simulate the computation and communication of

parallel programs to predict their worst-case running time given the LogGP [1]

parameters for the targeted machine. Their focus is on how to tune a parallel

program by changing communication patterns given a fixed size input.

7 Conclusion

In this paper, we described a tool called ti-trend-prof that can help Titanium

programmers to do communication performance debugging automatically. Given

only program traces from small processor configurations and/or small input sizes,

ti-trend-prof provides trends for each source code location that incurred

communication. Trends are modeled as a standard power law function with offset.

Programmers are alerted to trends with large exponents and coefficients, which

correspond to possible communication performance bug in the program. The

technique is completely automatic without any manual input from the user.

We used ti-trend-prof on two large Titanium applications, and we found

three real performance bugs in the code. Two of them were known previously from

time consuming manual debugging. The third was unknown prior to the use of the

tool. These results show the feasibility of using an automatic tool to find

communication performance bugs in PGAS languages, given only the program traces

from small processor configurations and small input sizes.

8 Acknowledgements

The authors would like to thank Simon Goldsmith and Daniel S. Wilkerson for

introducing us to trend-prof. Their enthusiasm and persistence greatly

encouraged us to adapt trend-prof for our needs. Simon Goldsmith also helped

us in implementing the parsing of GASNet trace outputs. Thanks go to the members

of the Titanium research group, who provided valuable suggestions and feedbacks

about this work. We would also like to thank the anonymous reviewers for their

helpful comments on the original submission.

This work was supported in part by the Department of Energy under DE-FC02-

06ER25753, by the California State MICRO Program, by the National Science

Foundation under ACI-9619020 and EIA-9802069, by the Defense Advanced

Research Projects Agency under F30602-95-C-0136, by Microsoft, and by Sun

Microsystems.

References

1. A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incorporating long

messages into the LogP model. Journal of Parallel and Distributed Computing, 44(1):71–79,

1997.

2. D. Bonachea, GASNet specifications, 2003.

3. E. A. Brewer. High-level optimization via automated statistical modeling. In PPOPP ’95:

Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 80–91, New York, NY, USA, 1995. ACM Press.

4. C. Coarfa, J. Mellor-Crummey, N. Froyd, and Y. Dotsenko. Scalability Analysis of SPMD

Codes Using Expectations. PPOPP, 2007

5. D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R.

Subramonian, and T. von Eicken. LogP: Towards a realistic model of parallel computation.

In Proceedings 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 1–12, 1993.

6. E. Givelberg and K. Yelick, Distributed Immersed Boundary Simulation in Titanium, 2004

7. S. Goldsmith, A. Aiken, and D. Wilkerson, Measuring Empirical Computational

Complexity, Foundations of Software Engineering, 2007

8. S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph execution profiler. In

SIGPLAN ’82: Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction,

pages 120–126, New York, NY, USA, 1982. ACM Press.

9. M. Kluge, A. Knüpfer, and W. E. Nagel. Knowledge based automatic scalability analysis and

extrapolation for MPI programs. In Euro-Par 2005 Parallel Processing: 11th International

Euro-Par Conference, Lecture Notes in Computer Science. Springer-Verlag.

10. R. Rugina and K. Schauser. Predicting the running times of parallel programs by

simulation. In Proceedings of the 12th International Parallel Processing Symposium and 9th

Symposium on Parallel and Distributed Processing, 1998.

11. J. Vetter and P. Worley, Asserting performance expectations, SC, 2002

12. T. Wen and P. Colella, Adaptive Mesh Refinement in Titanium, IPDPS, 2005

13. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,

S. Graham, D. Gay, P. Colella, and A. Aiken, Titanium: A high-performance Java dialect,

Workshop on Java for High-Performance Network Computing, 1998.

