
Experience in Using Titanium for Simulation of Immersed
Boundary Biological Systems

Siu Man Yau
UC Berkeley
smyau@cs.berkeley.edu

Abstract
The Immersed Boundary Method is a numerical method developed by Charles Peskin and David
McQueen of the Courant Institute of Mathematical Sciences to simulate a class of biological
systems [1]. The method is an effective way to simulate biological systems that can be
represented by elastic fibers immersed in an incompressible fluid. Examples of such biological
systems include the cochlea [4], small swimming animals [11], and blood flow in the heart [2].
These systems are complex, and detailed simulations require the use of large-scale parallel
machines, which have become increasing difficult to program and optimize in recent years. In
this paper we describe our experience using a Java-based parallel programming language,
Titanium, to implement the immersed boundary method. Titanium extends Java by providing
features for high performance, including a static parallelism model within a global address space.
Our software, which is publicly available, is the first version of the immersed boundary method
in three dimensions to run on distributed memory as well as shared memory machines. In this
report, we describe the implementation and some of the techniques used for performance tuning
in Titanium. We also present a performance model that can be used to understand and predict
the performance of our implementation on current and future machines. Our implementation is
designed to be generic, in that the core immersed boundary method is separated from parts of the
model that are specific to the heart or other systems, so that application writers can take our
generic package and add in their simulation-specific code.

I. Introduction
The Immersed Boundary Method is a numerical method developed by Charles Peskin and David
McQueen of the Courant Institute of Mathematical Sciences to simulate a class of biological
systems [1]. The method is an effective way to simulate systems that can be represented by
elastic fibers immersed in an incompressible fluid. Using this method, McQueen and Peskin
developed a simulation of the mammalian heartbeat [2], which has been used in medical
research, such as the evaluation of artificial heart valves.

Since this method’s development, many research groups have found other uses for the immersed
boundary method. For example, George Oster used the immersed boundary method to simulate
sea urchin embryo cells [3]; Ed Givelberg and Julian Bunn used it to simulate the cochlea [4];
John Stockie used it to simulate pulp fibers for his PhD thesis [6]; Aaron Fogelson at the
University of Utah used it to simulate blood platelet coagulation; Lisa Fauci at Tulane University
used it to simulate small swimming animals [11]; Peter Kramer in Rensselaer Polytechnic
Institute is adding thermodynamics to the immersed boundary method [26]; and New York
University and UC Berkeley plan to use it to develop simulations of insect flight.

 2

However, previous implementation of the simulation software can only be run on shared memory
parallel machines, which limits the number processors that their code can scale to. Moreover,
each research group that wants to write their own immersed boundary simulation has to replicate
the core simulation code from the Courant version. To remedy this situation, we have
implemented a generic immersed boundary software package written in Titanium for distributed
architectures. Titanium is a Java-like language that supports the Single Program Multiple Data
(SPMD) programming model, and is portable to most parallel machines [5]. A research group
that wants to write an immersed boundary simulation software can simply take this package and
add in their simulation-specific code.

Currently we have written and tuned the generic software package, and have used it to run a
contractile torus simulation, which is a scaled-down version of the mammalian heart simulation.
The package scales up to 64 processors, and has run on distributed parallel machines such as the
Cray T3E [17] and the Millennium cluster [20]. It has also been run on Origin 2000 [19], a
shared memory machine. The performance of the generic package is comparable with the
original code written in FORTRAN 77. We have also demonstrated generic software’s
adaptability by using it to run a component of the cochlea simulation [7]. The original
mammalian heart simulation is in the works [25].

II. Related work
Charles Peskin and David McQueen originally developed the Immersed Boundary Method [2].
Aaron Fogelson of the University of Utah has developed the Immersed Boundary Interface
Software (IBIS), which is a generic package that can be used to run various immersed boundary
simulations, but it only runs on single processor machines [9]. Nathaniel Cowen at Courant also
wrote a FORTRAN 77 based 3D generic immersed boundary code that can run on the C90, a
vector machine [23]. Our software is based on Cowen’s code base. Edward Givelberg and Julian
Bunn have used the immersed boundary method to simulate the cochlea with impressive
performance from the CACR Superdome [24]. However, the Superdome is a shared memory
machine and their software cannot be easily adapted to other applications of the method. George
Oster, Jun Yang, Steve Steinberg and Katherine Yelick developed a two-dimensional immersed
boundary simulation in split-C, which was demonstrated on Fogelson’s platelet coagulation
problem and on a simulation of epithelial cells in sea urchin embryos, but it is not readily
adaptable to three-dimensional problems [10]. They also developed a performance model to
understand the performance of his two-dimensional code [10].

III. Immersed Boundary Method Simulation
In the immersed boundary method simulation, the immersed boundary is represented by a
collection of fiber points, and the fluid surrounding the boundary is represented by fluid velocity-
, force- and pressure-fields defined on a rectangular lattice. The simulation is performed in time
steps. At each time step, the fiber point data structure updates its force value to reflect specific
forces that happens on the immersed boundary. In the heart and torus, that would be the
contraction of the heart muscles, in the cochlea simulation, that would be the pressure of
airwaves. Then, the fiber points exert force onto the fluid lattice as a sum of smoothed Dirac
Delta functions of fiber forces evaluated at the lattice points. The velocity of each cell of the

 3

fluid lattice is then calculated from these local forces using the Navier-Stokes equation of an
incompressible fluid. Finally, the fiber’s velocity is calculated from its surrounding fluid's
velocity as a sum of smoothed Dirac Delta functions of the fluid velocities evaluated at the fiber
points. After that, the fibers points are moved into a new position, based on their velocities. At
the next time step, based on the new position of the fiber, the forces on the fiber points can be
recalculated, and the whole operation is repeated [1].

Parallelization Strategy
Since the fluid lattice is rectangular, the lattice is easily partitioned by decomposing it into slabs.
In fact, since we are using FFTW [8] in part of our Navier-Stokes Solver, we must partition the
fluid grid using slab decomposition. Our group is currently investigating the use of multigrid
algorithms for the Navier-Stokes solver, which could yield more flexibility on how to partition
the fluid grid and improve scalability.

In contrast, we have much more flexibility on how to partition the fiber points. The partitioning
strategy is the deciding factor on the amount of communication overhead and load imbalance,
and thus the scalability of the application. The following discusses each phase in the immersed
boundary simulation, with special emphasis on the implications of parallelizing them for
distributed memory architectures for the original mammalian heart simulation.

Fiber Activation
This is the phase in the method that is specific to the heart simulation or other applications. At
the end of this phase, each fiber point will carry a force value to be exerted onto the fluid lattice.

In the heart simulation, the fiber points are arranged into sequences called fibers. These fibers
represent muscle fibers in the heart. In this phase, the fiber points interact with their neighbors on
the same fiber. A timestep-dependent parameter tells the fiber if it should be contracting, and the
fiber points in that fiber will look at one of their neighbors to see if they are close enough. If not,
the fiber point will calculate an amount of force that pulls it towards that neighbor according to a
spring law.

To calculate the force, each fiber point needs to know the coordinates of its neighbors. If its
neighboring fiber point is stored on another processor (i.e., the heart fiber was “cut” by a
processor boundary), the fiber point will have to send a message to the other processor to get its
neighbor’s coordinates. In order to minimize communication in this phase, we need to minimize
the fiber cuts. On the other hand, the amount of computation is directly proportional to the
number of fiber points that a processor owns. Therefore, to achieve load balance, we would like
a partitioning strategy that puts the same number of fiber points on each processor. An optimal
partitioning strategy for this phase of the computation in isolation would be to spread the fibers
evenly across processors, ensuring that each processor has nearly same number of fiber points,
but avoiding any division in fibers. Fortunately, the fibers are relatively short — a typical heart
simulation might have more than 10,000 fibers with an average of 80 points per fiber, so
partitioning whole fibers will still result in partitions that are fairly balanced.

 4

Spread Force
In this phase, each fiber point will update the 4x4x4 fluid cells surrounding it by adding the fluid
force that it will exert on them. The amount of force exerted on the fluid cell by a fiber point is
calculated as a smoothed Dirac Delta function of the fiber force evaluated at the fluid cell. In
particular, any fluid cell that is 4 units away from a fiber point will not experience force from the
fiber point.

If a fiber point is spreading its force to a fluid cell that is not on the same processor, it will need
to send the force data to the processor that owns the fluid cell. Therefore, the amount of
communication in this phase is proportional to the number of fiber points that are not partitioned
on the processor that owns the fluid cell it interacts with. To minimize the amount of
communication in this phase, we would like to have a partitioning strategy that places all the
fiber points on the same processor as its underlying fluid grids. On the other hand, the amount of
computation is directly proportional to the number of fiber points that a processor owns. So we
would like to place equal number of fiber points on each processor.

Since for most simulations we have seen, the fiber points are clustered around the center, it is
usually impossible to achieve both optimal load balance and minimal communication, given the
slab partition of the fluid grid. Therefore, depending on the performance characteristics of the
machine we are running the simulation on, it is sometimes beneficial to favor one partitioning
strategy over another.

Since there can be multiple fiber points living on different processors that need to interact with
the same fluid cell, we need to synchronize their updates. We use the processor that owns the
fluid cell as a synchronization point. Each processor will “bundle” up the force updates to fluid
cells on the same processor into one large data structure, and copy to another processor in a
single message. This approach amortizes the communication cost and simplifies the
synchronization problem. After all processors have “bundled” up all the force update requests,
each processor will look at all other processors for updates to its cells and process them one by
one. This is in accordance with the “owner computes” rule: the processor that owns the fiber
points computes the forces it will spread, but the processor that owns the fluid cells is
responsible for adding those forces onto the cell.

Because Titanium supports bulk remote copy of rectangular sub-arrays, we have opted to send
our “bundled” up requests in the form of rectangular sub-array of deltas. Each processor will
allocate the smallest rectangular sub-array that contains all the fluid cells that its fiber will touch
for each remote processor (the bounding box), and spreads the force on the sub-array. When all
processors are finished updating these delta sub-arrays, each processor will do a remote bulk
copy on each remote processor for those rectangular sub-arrays of deltas and use those values to
update its fluid grid.

Navier-Stokes Solver (NS Solver)
In our implementation of the immersed boundary method, and all others we are aware of, the NS
Solver is implemented using a 3d FFT on the fluid grid. We are using FFTW as our FFT kernel,
with a kernel written in C code and one written in Titanium that we can fall back on for
platforms that do not support FFTW.

 5

In the NS Solver, we first calculate the right-hand side of the NS equation, using nearest-
neighbor updates on the fluid force grid. Then we take an FFT of the right-hand side, and find
the velocities in Fourier space. Then we take an inverse FFT to get back the velocity grid in
normal space.

The NS Solver that has two communication phases: the all-to-all communication phase in the
transpose of 3d FFT, and the ghost-cell copy in the nearest-neighbor computation. The all-to-all
communication puts pressure on the bisection bandwidth of the machine. Since we are currently
using FFTW to handle all the FFT transforms, we must use slab decomposition to partition the
fluid grid. The slab decomposition also minimizes the number of ghost cells that need to be
copied. This phase does not involve the fibers, so the fiber partition scheme is irrelevant here.

Interpolate Velocity
In this phase, after the velocities have been calculated on the fluid grid, we calculate the velocity
on each fiber point by interpolating the velocity on the 4x4x4 fluid grid around the point. The
velocity that the fiber point gets is computed as the sum of smoothed Dirac Delta functions of the
fluid velocity grid evaluated at the fiber point. This phase has the same communication issue as
the spread-force phase. If a fiber point needs to interact with fluid grid that is not on the same
processor, it will need to communicate through the network. In fact, the interpolate phase uses
the same code base as the spread-force phase. As in the spread-force phase each processor finds
out all the fluid grid information that it needs from all other remote processors, and does a
remote bulk copy operation on each of them. This amortizes the communication cost of several
requests. The common code base also helped with performance tuning the code, as we tried
several different approaches, and any partition strategy that works well for spread-force phase
will also work well for the interpolate velocity phase.

IV. Titanium
Titanium is a superset of Java. It inherits all of Java’s features, except for threads, and instead
uses a Single Program Multiple Data (SPMD) model for parallelism. Like Java, parallel
processes/threads communicate through a single address space, although Titanium partitions the
addresses so that the programmer can control data layout. There are two types of references in
Titanium, those that are guaranteed to point to data local data and those that may point to remote
data. In addition to Java’s features, Titanium has user-defined immutable classes, which are
used for implementing small objects without the usual level of indirection, operator overloading,
templates, and region-based memory management. The language also adds true
multidimensional arrays to Java, and adds a rich calculus of array operators for taking sub-arrays,
transposes, and other array level operations. Titanium arrays are not distributed — each array
lives on only one processor, and they are aggressively optimized by the compiler [5]. Using the
template mechanism and global references, we have built a distributed array library [22].

A Titanium program is compiled by the Titanium compiler into C code with lightweight
messaging layers such as Active Messages [13], Shmem [14], LAPI [15], or, for portability, MPI
[16] [12]. The compiler currently runs on the Cray T3E [17] using Shmem, SP3 [18] using LAPI,
SGI Origin 2000 [19] using POSIX threads, and the Millennium cluster [20] of Intel Pentium

 6

machines with Myrinet, the Meteor cluster [21] of enhanced Redhat Linux boxes and SP3 using
MPI. Although we have only run our immersed boundary method on the Millennium cluster, the
T3E, and the IBM SP, it is expected to run in any platform that supports Titanium and FFTW.
Particular simulations may be limited by the amount of memory or processing power on the
machine.

V. Generic Package
The Titanium Generic Immersed Boundary Software (TiGIBS) package provides a framework
for application writers to develop their code more efficiently. It provides a high level API for a
tuned and optimized library that performs the part of the simulation that is common to all
immersed boundary code, while they provide the rest of the code that is specific only to their
simulation. The application-specific part consists of the entire activation phase and fiber points
partitioning algorithm. It is most easily written in Titanium, although mixing Titanium with C or
Fortran is also possible. The interaction phases and the computation fluid dynamics phase are
included in the package.

The package utilizes the Java class hierarchy to communicate with the rest of the simulation
software. All fiber points are required to extend an abstract “immersed boundary point” class,
which contains the fields – force, coordinates, and velocity – that are required to interact with the
fluid grid. The fluid grid is represented by a distributed array data structure that is part of
Titanium’s standard library. An application writer has access to all those fields and the contents
of the fluid grid, and uses these fields to communicate with the TiGIBS package.

A typical use of the TiGIBS is as follows. During initialization, the program reads in an input file
that describes the dimension of the fluid space, the viscosity of the fluid and other parameters
such as the number of timesteps to simulate, or the duration of each timestep. The program
creates a TiGIBS object, which takes care of the immersed boundary code. The program then
either reads from a file, or calls some subroutine that would generate fiber points and register
them to the TiGIBS object. These fiber points must extend the abstract “immersed boundary
point” class in order to register successfully. Then the program can proceed through a number of
simulation timesteps. At each of these timesteps, the program calculates the force carried by each
fiber points and updates the fields in each fiber points to reflect that change. Then the program
can simply call the TiGIBS object to advance one timestep, after which the TiGIBS object will
have spread these forces onto the fluid, solved the NS equation for the fluid velocity in the next
timestep, and interpolated the velocity back to the fiber points. So the coordinates and force
values on the fiber points can be seen as the “input parameters” to the TiGIBS simulation call,
and the velocity vector for those points is the “output parameter” for that call. Typically the
program updates the coordinates of each fiber point using their velocities. After a certain number
of timesteps, the program also reads the fluid grid and dump out the velocity field and pressure
fields to an output file, and also the velocity and coordinates of each fiber points to an output file
for analysis and visualization. See the appendix for detailed description of the interface.

This approach allows more flexibility – but more work – on the application writers’ part when
they are writing the simulation. In particular, the fiber points’ partitioning scheme - one of the
most important factors that affect the performance - is not determined by the package. One could
envision a less general immersed boundary packages that can be developed on top of this generic

 7

package and tailored to a specific kind of simulation. For example, in the heart and torus
simulations, the codes for reading the input files, saving output files, and activating the fiber
points are almost identical. A package can be written on top of the TiGIBS that is tuned for
simulations like the heart and torus – simulations whose fiber points are arranged into1D meshes
and whose activations only depend on their nearest neighbor. However, this code would be
useless for other simulations such as the cochlea, which arranges its fiber points into a 2D mesh.
Thus we decided that this code should be a separate package, and not included in TiGIBS.

Using the TiGIBS, we have written a contractile torus simulation and a component of a cochlea
simulation [7]. The original mammalian heart simulation is in the works [25].

VI. Performance Model
To help understand the performance characteristics of the heart code, we created a performance
model using the available data. Our goal is to have a performance model to estimate the amount
of time needed to run a single timestep given information about a specific run of the simulation.
For performance reasons, two of the computation kernels in the package are written in C; the
following performance numbers are not that of pure Titanium code.

Methodology
Initially, we aimed for the model to take raw data, i.e., simulation parameters such as number of
fiber points and fluid grid size, and machine parameters such as the peak FLOP rate, cache size,
network latency and bandwidth – and have the model generate a prediction of the run time. This
method was found to be too complicated. For instance, the communication time during the
interaction phase depends on how the fiber points are partitioned, which can be different from
model to model. Cache behavior is also affected by the way the fiber points are partitioned and
the amount of work done during the fiber activation phase, which is application-specific.
Therefore we turned to a more high-level model.

Instead of using low-level parameters such as FLOP rate and network latency, we used higher-
level parameters to predict the run time. The parameters used are derived from experiments.
These parameters are listed in the following tables. Application writers need to do small runs of
parts of their code on the machine to get these parameters. Then he can use the model to estimate
the run times of the larger run.

Machine-specific
Parameters

Symbol Meaning Value on the
T3E

Cost of a single
fiber point
activation

Kact The time it takes to
complete activation for
one fiber point

0.045 ms /
fiber point

Cost of remotely
accessing a fiber
point

Lact? The time it takes to
read the coordinates of
a fiber point from a
remote processor.
(Equivalent to de-
referencing 3 Titanium
remote pointers).

0.05125 ms /
fiber point

 8

Cost of a single
fiber point update

Kint? The time it takes to
spread a fiber’s force
to its surrounding
fluid (or interpolate
surrounding fluid’s
velocity to a fiber)

0.11 ms /
fiber point

Remote array copy
latency

Larr? Latency of sending the
fluid delta grids
to/from remote
processors. (Equivalent
to the latency of 3
remote Titanium array
copies).

0 ms (Due to
the low
latency of
T3E, for the
amount of data
we are
transmitting,
the message
overhead is
negligible.)

Titanium array
copy Bandwidth

Bti? Remote Titanium array
copy bandwidth

0.01 ms /
fluid cell

Cost of
transferring a
ghost cell

Bghs? Bandwidth of
transferring 3 Titanium
sliced arrays.

0.01587 ms /
ghost cell

Cost of
calculating RHS
per grid cell

Krhs? The time it takes to do
a nearest-neighbor
computation to solve
for the RHS of the NS
equation per fluid cell

0.00946 ms /
fluid cell

Number of
processors

? ? The number of
processors used to run
the simulation

N/A

Cost of serial 1D
FFT

Kfft? The constant in FFT 0.05ns

Transpose cost Btpo? The Bandwidth of FFTW
to do a 3d transpose

3.2ns per
fluid grid
cell

Constant of
Fourier space
calculation

Kfsp?

The time it takes to
calculate the solution
of NS equation in the
Fourier Space per fluid
grid cell

9ns / fluid
cell

Transpose latency Ltpo? The fixed overhead of
sending one transpose
inside FFTW

0 (The latency
was found to
be negligible
on the T3E due
to the low
latency)

Application
specific
parameters

Symbol Meaning Value for the
heart
simulation on
64 processors

Max. no. of fiber
points on a single
processor

C The number of fiber
points on the processor
that has the largest
number of fiber points
allocated to it.

10254

Max. no. of
processor

X Each processor can have
a number of fibers

5528

 9

boundary-crossing
fibers on a single
processor

crossing processor
boundaries. This term
is the max. of that
number over all
processors.

Size of bounding
boxes of fibers
owned by processor
i on remote
processor j

Bi,j The size of the
bounding box that can
hold the group fiber
points which are owned
by processor i, but
interact with part of
the fluid grid on
processor j.

17228 (this is
the
Max.i (? ?j Bi,j)
term over all
processors i,
j

Processor Boundary
surface area

A The area of the surface
in the fluid grid
between parts owned by
different processors

1282

One side of fluid
grid

n Size of the fluid grid 128

Table 1: Summary of parameters used in the performance model

i) Fiber Activation
In the fiber activation phase, the run time is limited by the speed at which the processor that
owns the largest number of fibers can update its fibers’ force values. The speed at which that
processor can update its fibers’ force values is in turn determined by the time to compute and
communicate, i.e., the number of fiber points on this processor, and the number of fiber points
that need to go across processor boundary to get the information from its neighbor. There are
thus two terms in the performance model for fiber activation:

C * Kact + X * Lact

From the expression, it is evident that a well-partitioned fiber point set is important to efficiency:
the points must be balanced so that the C term (max. number of fiber points on a single
processor) will not be too large, and there should not be too many fiber running across processor
boundaries (minimizing the X term).

In the heart simulation, the fiber activation consists of a relatively minor portion of the total run
time.

ii) Interaction phases
In the interaction phases, the code is divided into two parts: there is a computation part where the
code spreads force to or interpolate velocity from a buffer that contains the corresponding fluid
grid; and there is a communication part where the fluid in this buffer is copied to the fluid grid
using the Titanium’s remote array bulk copy method. The computation part is determined by the
speed at which the processor that owns the most number of fibers can compute the force being
spread or the velocity being interpolated. This in turn is determined by the number of fiber points
in the processor. For the communication part the runtime is determined by the amount of fluid
grid that a processor needs to send to interact with that is owned by another processor. So there
are also two terms for this part of the performance model:

 10

Kint?* C + (Larr * N + Bti * Max.i (? ?j Bi,j)) over all processors i, j

From the expression, it is clear that in addition to having load balanced with little fiber cuts by
processor boundaries, we would want a partition that where most of the fiber points are owned
by the same processor that owns its underlying grid, so the term (? ?j Bi,j) can be minimized.

iii) Navier-Stokes Solver
There are three parts to the NS Solver: the first part is the calculation of the right-hand side of the
NS equation. This involves nearest-neighbor computation on the fluid grid, which requires
communication across the processor boundaries of the fluid grid. The second part is the FFT and
inverse FFT, which are done by FFTW. The last part is the embarrassingly parallel solve inside
Fourier Space.

In the first part, there is a communication across processor boundaries, which we do by copying
ghost cells. The amount of communication is determined by the size of the boundary surface,
while the amount of computation is determined by the number of fluid grid points per processor:

Bghs * A + Krhs * n3 / N

The 3D FFT is determined by FFTW, which we can model with O(nLogn) model. Users can find
these constants by running the FFTW applications alone.

7 * Kfft * (n Log (n)) * 3n2 / N + n3 * Btpo / N + Ltpo * N

The constant “7” indicates that there are 7 FFTs in the NS Solver: 3 forward 3D FFTs on the
force grid, 3 inverse 3D FFTs on the velocity grid, and 1 inverse 3D FFT on the pressure grid.
The 3n2 term indicates that the 1D FFTs need to be done 3n2 times to make up one 3D FFT. We
divide the whole term with the number processors since the 1D FFTs are spread evenly on all
processors. The communication term assumes that the bisection bandwidth is not saturated, so
the time needed to communicate is proportional to the amount of data each processor needs to
send, plus the latency of each message, which is proportional to the number of messages it sends
(i.e., the number of processors).

In the last part, there is no communication involved. The runtime is a linear function of the
number of fluid grids cells per processor:

Kfsp * n3 / N

The NS Solver’s run time is the sum of these terms.

Validation
We measured the model against the actual results of the heart simulation on the T3E. As is
shown in the figure, the model falls within 10-20% of the actual run time.

 11

Spread force run time

0

2000

4000

6000

8000

10000

0 50 100

No. of procs

m
s Model

Real

Fiber calculation run time

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 20 40 60 80

No. of procs

m
s Model

Real

Interpolate velocity run time

0
1000

2000
3000
4000
5000
6000
7000
8000
9000

10000

0 20 40 60 80

No. of procs

Model

Real

NS Solver run time

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80

Num. o f procs

Model

Real

Figure 1: Predicted vs. actual run time of the heart simulation on the T3E

Although the performance model was not 100% accurate, it was instrumental in helping us find a
partitioning strategy for the heart simulation.

VII. Performance tuning in Titanium
The performance of a Titanium program is difficult to predict. Since Titanium code is compiled
first into C code before being compiled into machine code, the performance of a Titanium
program depends on how the Titanium compiler and optimizer generate C code, and how the C
compiler and optimizer generate machine code. To help improve the performance of the
Titanium immersed boundary method package, we have rewritten some of the computational
kernels in C, experimented with different fiber point partition strategies and tried using a new
sparse array copy construct in Titanium to cut down communication overhead. Most of the
performance analysis and tuning work was done on the Cray T3E, with analysis of sparse array
copy done on the Millennium.

Native code
Titanium has a powerful array abstraction built into the language and optimized extensively by
the compiler. In particular, the foreach construct allows efficient accesses to arrays to be written
conveniently. However, Titanium is not tuned for unpredictable or non-uniform accesses to
arrays, since in those cases, foreach loops cannot be used. Instead, we must rely on the creation
of Titanium points, which are tuples of integers, and use these Titanium points to calculate an

 12

index into the array. Such calculations are potentially time consuming, since Titanium’s runtime
library has to support arrays that have special layouts, such as a strided array, or the projection,
translation, or slice of other arrays. There are two places in the immersed boundary code that
requires such non-uniform and unpredictable access patterns. In those cases, in order to get better
performance, we are forced to write the computation kernel in C and use Titanium’s native C
interface to link it into the rest of the Titanium code.

In the interaction phases, we need to access the parts of the fluid grid that interact with the fiber
points – either writing to the force grid in the spread-force phase, or reading the velocity from it
in the interpolate velocity phase. The parts of the grid that we need to access are the grid cells
that are next to where the fiber points are. As the positions of the fiber points are determined by
the input, and as the fiber points move to different coordinates during the simulation, this access
pattern is unpredictable. The Titanium method to access the grid – by creating a point and using
the point to calculate the index into the array - proved to be too slow. Therefore we have decided
to move interaction phase’s computation kernel into native C code which understands the fluid
grids’ structure and by-pass some code to support special Titanium arrays. After we moved the
interaction phase into C code, we observed a 33% speedup. We think this kind of speed up is due
to assumptions about the array layout (e.g., whether the array is 1-strided, 0-based and is not
derived from operations such as slice, inject, permute, and restrict) that the native code can make
but the Titanium runtime array implementation does not.

The FFT kernel’s butterfly access pattern is a non-uniform access pattern to the fluid grid, and as
a result, the pure Titanium version is quite slow as well. We obtained about 4 times speedup
from moving the code into C. However, the strided memory access patterns in a straightforward
FFT implementation still perform poorly on modern memory hierarchies. Packages like FFTW
optimize for these hierarchies by using recursive decompositions of the FFT to improve locality
and they also optimize for other architectural features through an automatic tuning process.
Another advantage of moving the FFT code into C is that it gives us the option of using pre-
tuned FFT packages such as FFTW. On the T3E, we linked the FFTW library into the native C
code and use FFTW to take care of our FFT transformations; the calculations in Fourier space
are done in C. Making this change gave us another 4 times speed up over the Navier-Stokes
solver based on C code.

NS Solver based on: Pure Titanium Native C FFTW
Run time (in ms) 27737 7003 1730

Thus, native interface solves two of Titanium’s weaknesses: the performance of non-uniform and
unpredictable array access and the ability to interface into pre-tuned software packages.
However, the part written in C will not be type checked by the Titanium type checker and is thus
unsafe. Moreover, the part written in C may not be portable to other platforms. Therefore, the use
of native C code in Titanium should be restrained only to cases where there is an obvious benefit.

Partitioning Strategies
As discussed above, the fiber point partitioning strategy is a critical piece in determining the
speed of a simulation. We experimented with different partitioning strategies and eventually used

 13

the performance model guided us to determine a good strategy on the T3E to run the torus and
heart simulations.

The most intuitive partitioning strategy is to allocate fiber points to the same processor that owns
its fluid grid. But since the fiber points of the heart are located around the center, there is serious
load imbalance problem, with the C term (Max no. of points per processor) unacceptably high. In
fact, in the 8-processor partitions of the heart and torus using this strategy, the two fringe
processors do not get any fiber points at all.

Figure 2: A heart and torus partitioned to maximize locality. Each different color represent a fiber allocated
to different processors. These are 8 processor partitions, but only six processors have fibers on them in either

case.

We tried some heuristics to load balance the torus. For example, using a “pizza-cutter” strategy
to partition the torus gave us better performance numbers [7]. In that strategy, we partition the
torus as though we are lying the torus down on a table and cutting it like a pizza. However, non-
symmetric models such as the heart do not readily lend themselves to these heuristics.

The more general partitioning strategy is to maximize the locality of the fiber points, while
retaining load balance. In this strategy, each processor is allowed a maximum number of fiber
points, typically the average number of fiber points per processor. First, each processor gets as
many fiber points that interacts with its fluid cells as possible, but not more than the limit. After
that, some processors will have not enough points, and some will have points left over. The
processors that do not have enough points will then ask for processors that have leftovers for
points. Eventually all processors will have the same number of points. While this strategy
reduces the C parameter (Max. no. of fiber points on a single processor) and Bij parameter (Size
of bounding boxes on remote processors), it makes no attempt to lower the X parameter (Max.
no. of processor boundary-crossing fibers on any single processor), unlike the pizza cutter.

 14

Luckily, due to the low latency on the T3E (?), communications due to fiber cutting processor
boundaries is only a minor percentage of the total run time.

Figure 3: Heart and torus partitioned with load-balanced strategies

The run times of these two partition strategies for the heart are shown below:

Heart Simulation's Fiber Activation phase on T3E

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80

Number of processors

R
un

 ti
m

e
(m

s)

Model Load balanced

Actual Load balanced

Model Maximize
Locality

Actual Maximize
Locality

 15

Heart Simulation's Spread Force phase on T3E

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80

Number of Processors

R
un

 ti
m

e
in

 m
s

Model Load balanced

Actual Load balanced

Model Maximize
Locality

Actual Maximize
Locality

Heart Simulation's Interpolate phase on T3E

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80

Number of processors

R
un

 ti
m

e
(in

 m
s)

Model Load balanced

Actual Load balanced

Model Maximize
Locality

Actual Maximize
Locality

Figure 4: Run time graphs for the two partitioning strategies on the T3E

We see that the new partitioning scheme is several times more efficient than the naïve
maximized-locality scheme. We notice that in the fiber activation phase, the new partitioning
scheme is consistently about 6 times faster than the naïve scheme; while in the interaction
phases, the new partitioning scheme is about 3 times faster. This is because the fiber points tend
to aggregate around the center processors, making the processor in the center to do most of the
work in the naïve scheme. The number of fibers in the most “worked” processor is about 6 times
more in the naïve scheme, so we see a 6 times difference in fiber activation. But the advantage
gained by having a more balanced load is slightly offset by needing to copy the bounding boxes
during the interaction phases, so we only see a 3 times difference there. It is also important to
point out that since we are doing the experiments on the T3E, where the network latency is

 16

relatively low compared to CPU speed, so the communication inside the fiber activation phase is
only a minor percentage of the total run time (6.2% on 64 processors). If we move to a machine
with higher network latency, the communication inside the fiber activation phase will become
significant. We have seen that millennium actually slows down in the fiber activation phase
when we move from 16 processors to 32, since the fibers cut by processor boundaries have
increased, and communication in fiber activation became a dominant factor.

As is evident from the discussion, the optimal partitioning strategy depends on the machine
architecture, in particular, the CPU speed and network latency and bandwidth. However, the
partitioning strategy is designed to be outside of the generic immersed boundary package. This is
to allow application writers to take into account factors not visible to the TiGIBS package, such
as the communication and computation trade offs in the fibers activation phase, while designing
their own partitioning strategies. For applications where the fiber activation phase is not a
performance concern, we hope to write a tool that will help application writers to find a near-
optimally scalable partitioning strategy given information about a machine’s CPU and network.

For our heart simulation, we achieved a 5.5 times speed up from 8 to 64 processors (the single
processor speed cannot be measured as the application is too big to fit on one processor). The
speed up is limited by two factors: 1) most fiber points are aggregated around the center and it is
necessary to communicate the updates to the processor that owns the part of the fluid where the
fibers are aggregated; and 2) the number of fiber cutting across processor boundaries is large
enough to limit the speed up of the fiber activation part to about 5 times.

Sparse array copy
We noticed that in the interaction phases, although we are sending whole bounding boxes by
Titanium’s bulk array copy across processors, we are not using all data within them. This led us
to investigate the use of a new construct in Titanium array, the sparse array copy. Sparse array
copy allows a Titanium program to copy a non-rectangular array remotely. Ideally, we would
specify a non-rectangular array with only the fluid grid points that a processor need, and copy
just that array, that would make the message size smaller and reduce communication overhead.

Jason Duell, Wren Montgomery and Simon Yau investigated the use of sparse array copy on the
interaction phase of the model [7]. They found that using the sparse array copy has a drawback:
they need to construct the non-rectangular array to be used in the sparse copy. Since there can be
more than one fiber point in a fluid grid cell, and each fiber point interacts with a 4x4x4 fluid
sub-grid around it, a fluid grid can potentially need to interact with more than one fiber point. In
fact, since the fiber points tend to aggregate near the center of the fluid grid, fluid grid cells
normally interact with more than one fiber point. Making sure that a fluid grid cell is added to
the non-rectangular array at most once is an issue. In effect, the algorithm that constructs the
non-rectangular array needs to keep track of each fluid grid cell in the experiment and make sure
that it doesn’t add the same grid cell into the non-rectangular array twice. In fact, this accounting
overhead is so large that the speed gained by reducing network traffic is offset by this overhead,
and sparse array copy does not work.

Figure 5 shows the breakdown of the communication cost in the spread-force phase of a torus
simulation on the Millennium. “Original” and “megabox” versions use the bulk array copy,
“hash” and “boolean grid” versions use array copy, where they use a hash-table based and

 17

Boolean grid based accounting mechanism respectively. As seen from the graph, the set-up cost
of the two sparse array copy versions caused the communication cost of the sparse copy version
to be several times greater than the bulk copy version.

However, their work also suggested that in a simulation where less than 10% of the bounding
box is filled (the torus has 60% filled), the sparse array copy would pay off.

Figure 5. The communication cost of using sparse array copy.

(Source: Duell, Montgomery, Yau [7])

We included the native codes in interaction phase and in the NS solver, including the code that
calls FFTW, in the TiGIBS library, but not the sparse array copy.

VIII. TiGIBS Adaptability
To demonstrate TiGIBS’s adaptability, we have written three different simulations using the
TiGIBS.

Torus Simulation
The torus simulation was written by Nathaniel Cowen from Courant Institute of Mathematics at
New York University. It is a scaled-down version of the heart. TiGIBS was originally based on

 18

this code. There are 65,000 fiber points in this model and a 64x64x64 fluid grid. Early
performance tuning effort was done on this model on SGI Origin 2000 and the now cluster.

Figure 6. Contracting Torus

Heart Simulation/Experiment 800
The heart simulation is the model developed by Dave McQueen and Charles Peskin at NYU [1]
[2]. This model can be used in medical research such as evaluation of artificial heart valves.
Most of the performance tuning of the TiGIBS has been done on this model on either the T3E or
Millennium.

Cochlea Simulation
Juliann Bunn and Ed Givelberg from Cal Tech and University of Michigan used Immersed
Boundary Method to simulate the cochlea [4]. Their code was based on C++ and was written
using a different code base from the heart or torus. For instance, their fiber points are not
arranged into fibers, but a two dimensional mesh. Jason Duell, Wren Montgomery and Simon
Yau adapted the TiGIBS package to run part of the simulation (the oval window) [7]. The
TiGIBS framework proved to be adequate for the purposes of simulating the oval window.

Timestep 0 Timestep 4 Timestep 8 Timestep 12

Figure 7. Oval window simulation

 19

IX. Evaluation
Depending on the partitioning strategy and machine involved, the TiGIBS library scales
reasonably well. We see a 5.5 times speed up from 8 to 64 processors on the T3E. Unfortunately
the speed up is dependent on the fiber partitioning strategy and the latency and bandwidth of the
machine on which the simulation is run.

For the runs on the T3E, there is no obvious performance bottleneck – the run time of all four
phases are roughly the same:

Run time breakdown for heart simulation on T3E,
using 64 processors

16%

31%

21%

32%

fiber

spread froce

ns solver

interpolate vel

Figure 8. Run time breakdown of Heart Simulation on T3E

The interaction phases each account for about 1/3 of the run time, as the NS Solver account for
1/5 and fiber calculation account for the rest.

X. Future Work
Although we have demonstrated TiGIBS to be an adaptable package with reasonable
performance, there still is room for future work.

By using FFT based NS solver, we limit our fluid partitioning scheme to slab-decomposition. A
multigrid-based solver would most likely perform best with the fluid grid partitioned into cubes,
rather than slabs, and may allow for better simultaneous load balancing and locality for the fiber
distribution. An even better option appears to be an adaptive mesh, which would place finer
grids where there is most of the fluid activity. The fine fluid grids would likely exist in the part
of physical space as the fibers, so the fiber points and fluid mesh could use the same partition
and still exhibit good load balance. The multigrid solver also scales linearly with the problem
size, rather than the O(n log n) scaling of the FFT, although our performance model indicates
that the FFT is still quite efficient for the problem sizes considered.

 20

The TiGIBS is very generic. As a result, the application writers need to do more work to adapt it
to their own simulations. We can have sub-packages that can handle some subsets of the
immersed boundary simulations. For example, a sub-package that handles collection of 1D
meshes will be useful for the heart and contractile torus simulation; while a sub-package that
handles collection of 2D meshes will be useful for the cochlea simulation.

Since the fiber partition scheme is a major factor that affects the performance of the TiGIBS
library, it would be helpful to have an automatic tool that helps application writers partition their
fibers. Such a tool should be able to take in the network and computational characteristics of a
machine, a description of the fiber points, and automatically generate an output specifying which
fiber point goes to which processor.

XI. Conclusion
We have shown that it is possible to create a generic library in Titanium to enable application
writers to write immersed boundary code for distributed platforms with minimal effort. We have
adapted the mammalian heart simulation to the distributed platform using the library, which is
the first such implementation of this heart model. In addition, we have demonstrated the
flexibility of our software by using it for part of a cochlea model and a simple synthetic torus.

We also developed a performance model of the heart simulation, which can be used to estimate
the scalability of our software on other machines. The model requires as inputs the latency and
bandwidth of communication, as observed by Titanium applications, and the cost of floating
point. The floating-point estimate is best obtains by running serial code on one processor of the
machine of interest, as performance varies widely between phases of the computation and is not
a simple function of the peak floating point rate.

Our software has been extensively tuned, speeding up by more than 10x since our initial
implementation. Some of this tuning is algorithmic, having to do with the partitioning of fibers
and data across processors, which would be an issue in any parallel programming system. Our
experience also highlights some of the performance issues of Titanium, such as the high
overhead of array abstraction, when it is not used with irregular or strided memory accesses.
While our current implementation addressed this by using native C code for some key kernels, in
the long term, we believe this could be addressed by provided a less general array abstraction in
Titanium or by a more highly optimized compiler and runtime that takes advantage of the
common special cases that occur in our application.

XII. References:
[1] Charles S. Peskin and David M. McQueen. A general method for the computer simulation
of biological systems interacting with fluids. Biological Fluid Dynamics, ed.1995
http://www.math.nyu.edu/~mcqueen/Public/papers/seb/SEB_19971216/SEB_19971216.htm
l
[2] McQueen, D.M., and C.S. Peskin. 1997. Shared-memory parallel vector implementation
of the immersed boundary method for the computation of blood flow in the beating

 21

mammalian heart. Journal of Supercomputing 11(3): 213-236.
http://www.math.nyu.edu/~mcqueen/Public/papers/psc/PSC_19971216/PSC.19971216.html
[3] C. Peskin and G. Oster. Coordinated hydrolysis explains the mechanical behavior of
kinesin. Biophys. J. 68:202s-210s
[4] E. Givelberg, J. Bunn. Detailed Simulation of the Cochlea: Recent Progress Using Large
Shared Memory Parallel Computers. CACR Technical Report CACR-190, July 2001
http://www.cacr.caltech.edu/Publications/techpubs/cacr.190.pdf
[5] Yelick, K., L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,
S. Graham, D. Gay, P. Colella, and A. Aiken. 1998. Titanium: A High-Performance Java
Dialect. Concurrency: Practice and Experience, September-November 1998:825–36.
[6] Stockie, J. “Analysis and Computation of Immersed Boundaries, with application to
pulp fibers”, Univ. of British Columbia, Ph. D. Thesis, Sept 1997
[7] Duell, J., Montgomery, W., Yau, S. 2001. Cochlea Simulation using Titanium Generic
Immersed Boundary Software (TiGIBS). CS267 Fa01 Class Project Report
http://www.cs.berkeley.edu/~smyau/classes/fa01/cs267/Report.doc
[8] FFTW homepage: http://www.fftw.org
[9] Software for Immersed Boundary & Interface Simulation homepage:
http://www.math.utah.edu/IBIS/
[10] Steinberg, S. G., Yang, J., Yelick, K. Performance Modeling and Composition: A Case
Study in Cell Simulation. http://www-db.stanford.edu/~junyang/papers/syy-ipps96.ps
[11] M. Hopkins and L. Fauci, 2002. A computational model of the collective fluid dynamics
of motile microorganisms. J. Fluid Mech.,455, p. 149-174.
[12] Dan Bonachea, AMMPI: http://www.cs.berkeley.edu/~bonachea/ammpi/index.html
[13] Thorsen von Eicken, David Culler, Seth Copen Goldstein, Klaus Erick Schauser: Active
Messages: a Mechanism for Integrated Communication and Computation. Proceedings of
the 19th International Symposium on Computer Architecture, ACM Press, May 1992
[14] T3E Shmem: http://www.sdsc.edu/SDSCwire/v3.15/shmem_07_30_97.html
[15] Gautam Shah, Jarek Nieplocha, Jamshed Mirza, Chulho Kim, Robert Harrison, Rama K.
Govindaraju, Kevin Gildea, Paul DiNicola, Carl Bender: Performance and Experience with
LAPI - a New High-Performance Communication Library for the IBM RS/6000 SP.
IPPS'98
[16] Message Passing Interface: http://www.mpi-forum.org
[17] Cray T3E homepage: http://www.cray.com/products/systems/t3e/
[18] BlueHorizon users guide: http://www.npaci.edu/BlueHorizon
[19] SGI Origin 2000: http://www.sgi.com/origin/2000
[20] UC Berkeley Millennium Cluster: http://www.millennium.berkeley.edu
[21] Rock cluster at SDSC: http://rocks.npaci.edu/papers/rocks-documentation/book1.html
[22] Titanium distributed array library http://www.cs.berkeley.edu/~smyau/distArray
[23] Cray C90 at Pittsburg: http://www.psc.edu/machines/cray/c90/c90desc.html
[24] CACR HP Superdome: http://www.cacr.caltech.edu/News/superdome0900/
[25] Titanium Heart simulation: http://www.cs.berkeley.edu/~bina/Heart/
[26] Peter R. Kramer, Andrew J. Majda. Stochastic Mode Elimination Applied To Simulation
Methods For Complex Microfluid Systems. http://www.rpi.edu/~kramep/Public/mtv.pdf

 22

Appendix: Titanium Generic Immersed Boundary Software
API
package tigibs;

/* Class to represent a fiber point. All fiber points in TiGIBS must extend
this class */
public abstract class IbPoint {
 // id number.
 int id;

 // the Eulerian coordinates.
 public double x_coord;
 public double y_coord;
 public double z_coord;

 // velocity of this point.
 public double x_vel;
 public double y_vel;
 public double z_vel;

 // the force this point is spreading onto the fluid.
 public double force_pt1;
 public double force_pt2;
 public double force_pt3;

 // constructor
 public IbPoint (int pid, double x, double y, double z);
 // field extractors
 public inline int getId ();
 public inline double getXCoord ();
 public inline double getYCoord ();
 public inline double getZCoord ();
 // zeros out the velocity
 public void zeroOutVel ();
}

/* TiGIBS simulation object. */
public class Tigibs {
 // Register a fiber point in the object */
 public void registerPoint (IbPoint p);
 // Register a marker in the object (markers are points, but don’t spread
force
 public void registerMarker (IbPoint p);
 // Performs the spread force, NS Solver, and interpolate velocity steps
 public single void advanceOneIteration ();
 // remove all points from the object
 public single void unregisterAllPoints ();
 // constructor
 public single IbMain (int single numOfCellsX, int single numOfCellsY, int
single numOfCellsZ);
 // field extractor of the fluids
 public single DistArrayDouble3d getU (); // dx/dt
 public single DistArrayDouble3d getV (); // dy/dt
 public single DistArrayDouble3d getW (); // dz/dt

 23

 public single DistArrayDouble3d getF1 (); // force vector
 public single DistArrayDouble3d getF2 ();
 public single DistArrayDouble3d getF3 ();
 public single DistArrayDouble3d getP (); // pressure
 // updates the coordinates of the registered points according to its
velocity
 public void move ();
}

