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Abstract 
The Immersed Boundary Method is a numerical method developed by Charles Peskin and David 
McQueen of the Courant Institute of Mathematical Sciences to simulate a class of biological 
systems [1]. The method is an effective way to simulate biological systems that can be 
represented by elastic fibers immersed in an incompressible fluid. Examples of such biological 
systems include the cochlea [4], small swimming animals [11], and blood flow in the heart [2]. 
These systems are complex, and detailed simulations require the use of large-scale parallel 
machines, which have become increasing difficult to program and optimize in recent years. In 
this paper we describe our experience using a Java-based parallel programming language, 
Titanium, to implement the immersed boundary method. Titanium extends Java by providing 
features for high performance, including a static parallelism model within a global address space.  
Our software, which is publicly available, is the first version of the immersed boundary method 
in three dimensions to run on distributed memory as well as shared memory machines.  In this 
report, we describe the implementation and some of the techniques used for performance tuning 
in Titanium.  We also present a performance model that can be used to understand and predict 
the performance of our implementation on current and future machines. Our implementation is 
designed to be generic, in that the core immersed boundary method is separated from parts of the 
model that are specific to the heart or other systems, so that application writers can take our 
generic package and add in their simulation-specific code. 
 

I. Introduction 
The Immersed Boundary Method is a numerical method developed by Charles Peskin and David 
McQueen of the Courant Institute of Mathematical Sciences to simulate a class of biological 
systems [1]. The method is an effective way to simulate systems that can be represented by 
elastic fibers immersed in an incompressible fluid. Using this method, McQueen and Peskin 
developed a simulation of the mammalian heartbeat [2], which has been used in medical 
research, such as the evaluation of artificial heart valves. 
 
Since this method’s development, many research groups have found other uses for the immersed 
boundary method. For example, George Oster used the immersed boundary method to simulate 
sea urchin embryo cells [3]; Ed Givelberg and Julian Bunn used it to simulate the cochlea [4]; 
John Stockie used it to simulate pulp fibers for his PhD thesis [6]; Aaron Fogelson at the 
University of Utah used it to simulate blood platelet coagulation; Lisa Fauci at Tulane University 
used it to simulate small swimming animals [11]; Peter Kramer in Rensselaer Polytechnic 
Institute is adding thermodynamics to the immersed boundary method [26]; and New York 
University and UC Berkeley plan to use it to develop simulations of insect flight. 
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However, previous implementation of the simulation software can only be run on shared memory 
parallel machines, which limits the number processors that their code can scale to. Moreover, 
each research group that wants to write their own immersed boundary simulation has to replicate 
the core simulation code from the Courant version. To remedy this situation, we have 
implemented a generic immersed boundary software package written in Titanium for distributed 
architectures. Titanium is a Java-like language that supports the Single Program Multiple Data 
(SPMD) programming model, and is portable to most parallel machines [5]. A research group 
that wants to write an immersed boundary simulation software can simply take this package and 
add in their simulation-specific code. 
 
Currently we have written and tuned the generic software package, and have used it to run a 
contractile torus simulation, which is a scaled-down version of the mammalian heart simulation. 
The package scales up to 64 processors, and has run on distributed parallel machines such as the 
Cray T3E [17] and the Millennium cluster [20]. It has also been run on Origin 2000 [19], a 
shared memory machine. The performance of the generic package is comparable with the 
original code written in FORTRAN 77. We have also demonstrated generic software’s 
adaptability by using it to run a component of the cochlea simulation [7]. The original 
mammalian heart simulation is in the works [25]. 
 

II. Related work 
Charles Peskin and David McQueen originally developed the Immersed Boundary Method [2]. 
Aaron Fogelson of the University of Utah has developed the Immersed Boundary Interface 
Software (IBIS), which is a generic package that can be used to run various immersed boundary 
simulations, but it only runs on single processor machines [9]. Nathaniel Cowen at Courant also 
wrote a FORTRAN 77 based 3D generic immersed boundary code that can run on the C90, a 
vector machine [23]. Our software is based on Cowen’s code base. Edward Givelberg and Julian 
Bunn have used the immersed boundary method to simulate the cochlea with impressive 
performance from the CACR Superdome [24]. However, the Superdome is a shared memory 
machine and their software cannot be easily adapted to other applications of the method. George 
Oster, Jun Yang, Steve Steinberg and Katherine Yelick developed a two-dimensional immersed 
boundary simulation in split-C, which was demonstrated on Fogelson’s platelet coagulation 
problem and on a simulation of epithelial cells in sea urchin embryos, but it is not readily 
adaptable to three-dimensional problems [10]. They also developed a performance model to 
understand the performance of his two-dimensional code [10]. 
 

III. Immersed Boundary Method Simulation 
In the immersed boundary method simulation, the immersed boundary is represented by a 
collection of fiber points, and the fluid surrounding the boundary is represented by fluid velocity-
, force- and pressure-fields defined on a rectangular lattice. The simulation is performed in time 
steps. At each time step, the fiber point data structure updates its force value to reflect specific 
forces that happens on the immersed boundary. In the heart and torus, that would be the 
contraction of the heart muscles, in the cochlea simulation, that would be the pressure of 
airwaves. Then, the fiber points exert force onto the fluid lattice as a sum of smoothed Dirac 
Delta functions of fiber forces evaluated at the lattice points. The velocity of each cell of the 
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fluid lattice is then calculated from these local forces using the Navier-Stokes equation of an 
incompressible fluid. Finally, the fiber’s velocity is calculated from its surrounding fluid's 
velocity as a sum of smoothed Dirac Delta functions of the fluid velocities evaluated at the fiber 
points. After that, the fibers points are moved into a new position, based on their velocities. At 
the next time step, based on the new position of the fiber, the forces on the fiber points can be 
recalculated, and the whole operation is repeated [1].  
 

Parallelization Strategy 
Since the fluid lattice is rectangular, the lattice is easily partitioned by decomposing it into slabs. 
In fact, since we are using FFTW [8] in part of our Navier-Stokes Solver, we must partition the 
fluid grid using slab decomposition. Our group is currently investigating the use of multigrid 
algorithms for the Navier-Stokes solver, which could yield more flexibility on how to partition 
the fluid grid and improve scalability. 
 
In contrast, we have much more flexibility on how to partition the fiber points. The partitioning 
strategy is the deciding factor on the amount of communication overhead and load imbalance, 
and thus the scalability of the application. The following discusses each phase in the immersed 
boundary simulation, with special emphasis on the implications of parallelizing them for 
distributed memory architectures for the original mammalian heart simulation. 
 

Fiber Activation 
This is the phase in the method that is specific to the heart simulation or other applications. At 
the end of this phase, each fiber point will carry a force value to be exerted onto the fluid lattice.  
 
In the heart simulation, the fiber points are arranged into sequences called fibers. These fibers 
represent muscle fibers in the heart. In this phase, the fiber points interact with their neighbors on 
the same fiber. A timestep-dependent parameter tells the fiber if it should be contracting, and the 
fiber points in that fiber will look at one of their neighbors to see if they are close enough. If not, 
the fiber point will calculate an amount of force that pulls it towards that neighbor according to a 
spring law. 
 
To calculate the force, each fiber point needs to know the coordinates of its neighbors. If its 
neighboring fiber point is stored on another processor (i.e., the heart fiber was “cut” by a 
processor boundary), the fiber point will have to send a message to the other processor to get its 
neighbor’s coordinates. In order to minimize communication in this phase, we need to minimize 
the fiber cuts. On the other hand, the amount of computation is directly proportional to the 
number of fiber points that a processor owns. Therefore, to achieve load balance, we would like 
a partitioning strategy that puts the same number of fiber points on each processor. An optimal 
partitioning strategy for this phase of the computation in isolation would be to spread the fibers 
evenly across processors, ensuring that each processor has nearly same number of fiber points, 
but avoiding any division in fibers.  Fortunately, the fibers are relatively short —  a typical heart 
simulation might have more than 10,000 fibers with an average of 80 points per fiber, so 
partitioning whole fibers will still result in partitions that are fairly balanced. 
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Spread Force 
In this phase, each fiber point will update the 4x4x4 fluid cells surrounding it by adding the fluid 
force that it will exert on them. The amount of force exerted on the fluid cell by a fiber point is 
calculated as a smoothed Dirac Delta function of the fiber force evaluated at the fluid cell. In 
particular, any fluid cell that is 4 units away from a fiber point will not experience force from the 
fiber point.  
 
If a fiber point is spreading its force to a fluid cell that is not on the same processor, it will need 
to send the force data to the processor that owns the fluid cell. Therefore, the amount of 
communication in this phase is proportional to the number of fiber points that are not partitioned 
on the processor that owns the fluid cell it interacts with. To minimize the amount of 
communication in this phase, we would like to have a partitioning strategy that places all the 
fiber points on the same processor as its underlying fluid grids. On the other hand, the amount of 
computation is directly proportional to the number of fiber points that a processor owns. So we 
would like to place equal number of fiber points on each processor.  
 
Since for most simulations we have seen, the fiber points are clustered around the center, it is 
usually impossible to achieve both optimal load balance and minimal communication, given the 
slab partition of the fluid grid. Therefore, depending on the performance characteristics of the 
machine we are running the simulation on, it is sometimes beneficial to favor one partitioning 
strategy over another.  
 
Since there can be multiple fiber points living on different processors that need to interact with 
the same fluid cell, we need to synchronize their updates. We use the processor that owns the 
fluid cell as a synchronization point. Each processor will “bundle” up the force updates to fluid 
cells on the same processor into one large data structure, and copy to another processor in a 
single message. This approach amortizes the communication cost and simplifies the 
synchronization problem. After all processors have “bundled” up all the force update requests, 
each processor will look at all other processors for updates to its cells and process them one by 
one. This is in accordance with the “owner computes” rule: the processor that owns the fiber 
points computes the forces it will spread, but the processor that owns the fluid cells is 
responsible for adding those forces onto the cell. 
 
Because Titanium supports bulk remote copy of rectangular sub-arrays, we have opted to send 
our “bundled” up requests in the form of rectangular sub-array of deltas. Each processor will 
allocate the smallest rectangular sub-array that contains all the fluid cells that its fiber will touch 
for each remote processor (the bounding box), and spreads the force on the sub-array. When all 
processors are finished updating these delta sub-arrays, each processor will do a remote bulk 
copy on each remote processor for those rectangular sub-arrays of deltas and use those values to 
update its fluid grid.  
 

Navier-Stokes Solver (NS Solver) 
In our implementation of the immersed boundary method, and all others we are aware of, the NS 
Solver is implemented using a 3d FFT on the fluid grid. We are using FFTW as our FFT kernel, 
with a kernel written in C code and one written in Titanium that we can fall back on for 
platforms that do not support FFTW.  
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In the NS Solver, we first calculate the right-hand side of the NS equation, using nearest-
neighbor updates on the fluid force grid. Then we take an FFT of the right-hand side, and find 
the velocities in Fourier space. Then we take an inverse FFT to get back the velocity grid in 
normal space.  
 
The NS Solver that has two communication phases: the all-to-all communication phase in the 
transpose of 3d FFT, and the ghost-cell copy in the nearest-neighbor computation. The all-to-all 
communication puts pressure on the bisection bandwidth of the machine. Since we are currently 
using FFTW to handle all the FFT transforms, we must use slab decomposition to partition the 
fluid grid. The slab decomposition also minimizes the number of ghost cells that need to be 
copied. This phase does not involve the fibers, so the fiber partition scheme is irrelevant here. 
 

Interpolate Velocity 
In this phase, after the velocities have been calculated on the fluid grid, we calculate the velocity 
on each fiber point by interpolating the velocity on the 4x4x4 fluid grid around the point. The 
velocity that the fiber point gets is computed as the sum of smoothed Dirac Delta functions of the 
fluid velocity grid evaluated at the fiber point. This phase has the same communication issue as 
the spread-force phase. If a fiber point needs to interact with fluid grid that is not on the same 
processor, it will need to communicate through the network. In fact, the interpolate phase uses 
the same code base as the spread-force phase. As in the spread-force phase each processor finds 
out all the fluid grid information that it needs from all other remote processors, and does a 
remote bulk copy operation on each of them. This amortizes the communication cost of several 
requests. The common code base also helped with performance tuning the code, as we tried 
several different approaches, and any partition strategy that works well for spread-force phase 
will also work well for the interpolate velocity phase. 
 

IV. Titanium 
Titanium is a superset of Java. It inherits all of Java’s features, except for threads, and instead 
uses a Single Program Multiple Data (SPMD) model for parallelism.  Like Java, parallel 
processes/threads communicate through a single address space, although Titanium partitions the 
addresses so that the programmer can control data layout.  There are two types of references in 
Titanium, those that are guaranteed to point to data local data and those that may point to remote 
data.  In addition to Java’s features, Titanium has user-defined immutable classes, which are 
used for implementing small objects without the usual level of indirection, operator overloading, 
templates, and region-based memory management.  The language also adds true 
multidimensional arrays to Java, and adds a rich calculus of array operators for taking sub-arrays, 
transposes, and other array level operations. Titanium arrays are not distributed —  each array 
lives on only one processor, and they are aggressively optimized by the compiler [5]. Using the 
template mechanism and global references, we have built a distributed array library [22]. 
 
A Titanium program is compiled by the Titanium compiler into C code with lightweight 
messaging layers such as Active Messages [13], Shmem [14], LAPI [15], or, for portability, MPI 
[16] [12]. The compiler currently runs on the Cray T3E [17] using Shmem, SP3 [18] using LAPI, 
SGI Origin 2000 [19] using POSIX threads, and the Millennium cluster [20] of Intel Pentium 
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machines with Myrinet, the Meteor cluster [21] of enhanced Redhat Linux boxes and SP3 using 
MPI. Although we have only run our immersed boundary method on the Millennium cluster, the 
T3E, and the IBM SP, it is expected to run in any platform that supports Titanium and FFTW. 
Particular simulations may be limited by the amount of memory or processing power on the 
machine. 
 

V. Generic Package 
The Titanium Generic Immersed Boundary Software (TiGIBS) package provides a framework 
for application writers to develop their code more efficiently. It provides a high level API for a 
tuned and optimized library that performs the part of the simulation that is common to all 
immersed boundary code, while they provide the rest of the code that is specific only to their 
simulation. The application-specific part consists of the entire activation phase and fiber points 
partitioning algorithm. It is most easily written in Titanium, although mixing Titanium with C or 
Fortran is also possible. The interaction phases and the computation fluid dynamics phase are 
included in the package.  
 
The package utilizes the Java class hierarchy to communicate with the rest of the simulation 
software. All fiber points are required to extend an abstract “immersed boundary point” class, 
which contains the fields – force, coordinates, and velocity – that are required to interact with the 
fluid grid. The fluid grid is represented by a distributed array data structure that is part of 
Titanium’s standard library. An application writer has access to all those fields and the contents 
of the fluid grid, and uses these fields to communicate with the TiGIBS package.  
 
A typical use of the TiGIBS is as follows. During initialization, the program reads in an input file 
that describes the dimension of the fluid space, the viscosity of the fluid and other parameters 
such as the number of timesteps to simulate, or the duration of each timestep. The program 
creates a TiGIBS object, which takes care of the immersed boundary code. The program then 
either reads from a file, or calls some subroutine that would generate fiber points and register 
them to the TiGIBS object. These fiber points must extend the abstract “immersed boundary 
point” class in order to register successfully. Then the program can proceed through a number of 
simulation timesteps. At each of these timesteps, the program calculates the force carried by each 
fiber points and updates the fields in each fiber points to reflect that change. Then the program 
can simply call the TiGIBS object to advance one timestep, after which the TiGIBS object will 
have spread these forces onto the fluid, solved the NS equation for the fluid velocity in the next 
timestep, and interpolated the velocity back to the fiber points. So the coordinates and force 
values on the fiber points can be seen as the “input parameters” to the TiGIBS simulation call, 
and the velocity vector for those points is the “output parameter” for that call. Typically the 
program updates the coordinates of each fiber point using their velocities. After a certain number 
of timesteps, the program also reads the fluid grid and dump out the velocity field and pressure 
fields to an output file, and also the velocity and coordinates of each fiber points to an output file 
for analysis and visualization. See the appendix for detailed description of the interface. 
 
This approach allows more flexibility – but more work – on the application writers’ part when 
they are writing the simulation. In particular, the fiber points’ partitioning scheme - one of the 
most important factors that affect the performance - is not determined by the package. One could 
envision a less general immersed boundary packages that can be developed on top of this generic 
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package and tailored to a specific kind of simulation. For example, in the heart and torus 
simulations, the codes for reading the input files, saving output files, and activating the fiber 
points are almost identical. A package can be written on top of the TiGIBS that is tuned for 
simulations like the heart and torus – simulations whose fiber points are arranged into1D meshes 
and whose activations only depend on their nearest neighbor. However, this code would be 
useless for other simulations such as the cochlea, which arranges its fiber points into a 2D mesh. 
Thus we decided that this code should be a separate package, and not included in TiGIBS. 
 
Using the TiGIBS, we have written a contractile torus simulation and a component of a cochlea 
simulation [7]. The original mammalian heart simulation is in the works [25]. 
 

VI. Performance Model 
To help understand the performance characteristics of the heart code, we created a performance 
model using the available data. Our goal is to have a performance model to estimate the amount 
of time needed to run a single timestep given information about a specific run of the simulation. 
For performance reasons, two of the computation kernels in the package are written in C; the 
following performance numbers are not that of pure Titanium code. 

Methodology 
Initially, we aimed for the model to take raw data, i.e., simulation parameters such as number of 
fiber points and fluid grid size, and machine parameters such as the peak FLOP rate, cache size, 
network latency and bandwidth – and have the model generate a prediction of the run time. This 
method was found to be too complicated. For instance, the communication time during the 
interaction phase depends on how the fiber points are partitioned, which can be different from 
model to model. Cache behavior is also affected by the way the fiber points are partitioned and 
the amount of work done during the fiber activation phase, which is application-specific. 
Therefore we turned to a more high-level model. 
 
Instead of using low-level parameters such as FLOP rate and network latency, we used higher-
level parameters to predict the run time. The parameters used are derived from experiments. 
These parameters are listed in the following tables. Application writers need to do small runs of 
parts of their code on the machine to get these parameters. Then he can use the model to estimate 
the run times of the larger run.  
 
 
Machine-specific 
Parameters 

Symbol Meaning Value on the 
T3E 

Cost of a single 
fiber point 
activation 

Kact The time it takes to 
complete activation for 
one fiber point 

0.045 ms / 
fiber point 

Cost of remotely 
accessing a fiber 
point 

Lact? The time it takes to 
read the coordinates of 
a fiber point from a 
remote processor. 
(Equivalent to de-
referencing 3 Titanium 
remote pointers). 

0.05125 ms / 
fiber point 
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Cost of a single 
fiber point update 

Kint? The time it takes to 
spread a fiber’s force 
to its surrounding 
fluid (or interpolate 
surrounding fluid’s 
velocity to a fiber) 

0.11 ms / 
fiber point 

Remote array copy 
latency 

Larr? Latency of sending the 
fluid delta grids 
to/from remote 
processors. (Equivalent 
to the latency of 3 
remote Titanium array 
copies). 

0 ms (Due to 
the low 
latency of 
T3E, for the 
amount of data 
we are 
transmitting, 
the message 
overhead is 
negligible.) 

Titanium array 
copy Bandwidth 

Bti? Remote Titanium array 
copy bandwidth 

0.01 ms / 
fluid cell 

Cost of 
transferring a 
ghost cell 

Bghs? Bandwidth of 
transferring 3 Titanium 
sliced arrays. 

0.01587 ms / 
ghost cell 

Cost of 
calculating RHS 
per grid cell 

Krhs? The time it takes to do 
a nearest-neighbor 
computation to solve 
for the RHS of the NS 
equation per fluid cell 

0.00946 ms / 
fluid cell 
 

Number of 
processors 

? ? The number of 
processors used to run 
the simulation 

N/A 

Cost of serial 1D 
FFT 

Kfft? The constant in FFT 0.05ns 

Transpose cost Btpo? The Bandwidth of FFTW 
to do a 3d transpose 

3.2ns per 
fluid grid 
cell 

Constant of 
Fourier space 
calculation 

Kfsp?
 

The time it takes to 
calculate the solution 
of NS equation in the 
Fourier Space per fluid 
grid cell 

9ns / fluid 
cell 

Transpose latency Ltpo? The fixed overhead of 
sending one transpose 
inside FFTW 

0 (The latency 
was found to 
be negligible 
on the T3E due 
to the low 
latency) 

Application 
specific 
parameters 

Symbol Meaning Value for the 
heart 
simulation on 
64 processors  

Max. no. of fiber 
points on a single 
processor 

C The number of fiber 
points on the processor 
that has the largest 
number of fiber points 
allocated to it.  

10254 

Max. no. of 
processor 

X Each processor can have 
a number of fibers 

5528 
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boundary-crossing 
fibers on a single 
processor 

crossing processor 
boundaries. This term 
is the max. of that 
number over all 
processors. 

Size of bounding 
boxes of fibers 
owned by processor 
i on remote 
processor j 

Bi,j The size of the 
bounding box that can 
hold the group fiber 
points which are owned 
by processor i, but 
interact with part of 
the fluid grid on 
processor j. 

17228 (this is 
the  
Max.i (? ?j Bi,j) 
term over all 
processors i, 
j 

Processor Boundary 
surface area 

A The area of the surface 
in the fluid grid 
between parts owned by 
different processors 

1282 
 

One side of fluid 
grid 

n Size of the fluid grid 128 

Table 1: Summary of parameters used in the performance model 

i) Fiber Activation 
In the fiber activation phase, the run time is limited by the speed at which the processor that 
owns the largest number of fibers can update its fibers’ force values. The speed at which that 
processor can update its fibers’ force values is in turn determined by the time to compute and 
communicate, i.e., the number of fiber points on this processor, and the number of fiber points 
that need to go across processor boundary to get the information from its neighbor. There are 
thus two terms in the performance model for fiber activation:  
 
C * Kact + X * Lact 
 
From the expression, it is evident that a well-partitioned fiber point set is important to efficiency: 
the points must be balanced so that the C term (max. number of fiber points on a single 
processor) will not be too large, and there should not be too many fiber running across processor 
boundaries (minimizing the X term). 
 
In the heart simulation, the fiber activation consists of a relatively minor portion of the total run 
time. 

ii) Interaction phases 
In the interaction phases, the code is divided into two parts: there is a computation part where the 
code spreads force to or interpolate velocity from a buffer that contains the corresponding fluid 
grid; and there is a communication part where the fluid in this buffer is copied to the fluid grid 
using the Titanium’s remote array bulk copy method. The computation part is determined by the 
speed at which the processor that owns the most number of fibers can compute the force being 
spread or the velocity being interpolated. This in turn is determined by the number of fiber points 
in the processor. For the communication part the runtime is determined by the amount of fluid 
grid that a processor needs to send to interact with that is owned by another processor. So there 
are also two terms for this part of the performance model:  
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Kint?* C + (Larr * N + Bti * Max.i (? ?j Bi,j)) over all processors i, j 
 
From the expression, it is clear that in addition to having load balanced with little fiber cuts by 
processor boundaries, we would want a partition that where most of the fiber points are owned 
by the same processor that owns its underlying grid, so the term (? ?j Bi,j) can be minimized. 
 

iii) Navier-Stokes Solver 
There are three parts to the NS Solver: the first part is the calculation of the right-hand side of the 
NS equation. This involves nearest-neighbor computation on the fluid grid, which requires 
communication across the processor boundaries of the fluid grid. The second part is the FFT and 
inverse FFT, which are done by FFTW. The last part is the embarrassingly parallel solve inside 
Fourier Space.  
 
In the first part, there is a communication across processor boundaries, which we do by copying 
ghost cells. The amount of communication is determined by the size of the boundary surface, 
while the amount of computation is determined by the number of fluid grid points per processor: 
 
Bghs * A + Krhs * n3 / N 
 
The 3D FFT is determined by FFTW, which we can model with O(nLogn) model. Users can find 
these constants by running the FFTW applications alone.  
 
7 * Kfft * (n Log (n)) * 3n2 / N + n3 * Btpo / N + Ltpo * N 
 
The constant “7” indicates that there are 7 FFTs in the NS Solver: 3 forward 3D FFTs on the 
force grid, 3 inverse 3D FFTs on the velocity grid, and 1 inverse 3D FFT on the pressure grid. 
The 3n2 term indicates that the 1D FFTs need to be done 3n2 times to make up one 3D FFT. We 
divide the whole term with the number processors since the 1D FFTs are spread evenly on all 
processors. The communication term assumes that the bisection bandwidth is not saturated, so 
the time needed to communicate is proportional to the amount of data each processor needs to 
send, plus the latency of each message, which is proportional to the number of messages it sends 
(i.e., the number of processors). 
 
In the last part, there is no communication involved. The runtime is a linear function of the 
number of fluid grids cells per processor: 
 
Kfsp * n3 / N 
 
The NS Solver’s run time is the sum of these terms. 
 

Validation 
We measured the model against the actual results of the heart simulation on the T3E. As is 
shown in the figure, the model falls within 10-20% of the actual run time. 
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Figure 1: Predicted vs. actual run time of the heart simulation on the T3E 

 
Although the performance model was not 100% accurate, it was instrumental in helping us find a 
partitioning strategy for the heart simulation.  
 

VII. Performance tuning in Titanium 
The performance of a Titanium program is difficult to predict. Since Titanium code is compiled 
first into C code before being compiled into machine code, the performance of a Titanium 
program depends on how the Titanium compiler and optimizer generate C code, and how the C 
compiler and optimizer generate machine code. To help improve the performance of the 
Titanium immersed boundary method package, we have rewritten some of the computational 
kernels in C, experimented with different fiber point partition strategies and tried using a new 
sparse array copy construct in Titanium to cut down communication overhead. Most of the 
performance analysis and tuning work was done on the Cray T3E, with analysis of sparse array 
copy done on the Millennium.  

Native code 
Titanium has a powerful array abstraction built into the language and optimized extensively by 
the compiler. In particular, the foreach construct allows efficient accesses to arrays to be written 
conveniently. However, Titanium is not tuned for unpredictable or non-uniform accesses to 
arrays, since in those cases, foreach loops cannot be used. Instead, we must rely on the creation 
of Titanium points, which are tuples of integers, and use these Titanium points to calculate an 
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index into the array. Such calculations are potentially time consuming, since Titanium’s runtime 
library has to support arrays that have special layouts, such as a strided array, or the projection, 
translation, or slice of other arrays. There are two places in the immersed boundary code that 
requires such non-uniform and unpredictable access patterns. In those cases, in order to get better 
performance, we are forced to write the computation kernel in C and use Titanium’s native C 
interface to link it into the rest of the Titanium code.  
 
In the interaction phases, we need to access the parts of the fluid grid that interact with the fiber 
points – either writing to the force grid in the spread-force phase, or reading the velocity from it 
in the interpolate velocity phase. The parts of the grid that we need to access are the grid cells 
that are next to where the fiber points are. As the positions of the fiber points are determined by 
the input, and as the fiber points move to different coordinates during the simulation, this access 
pattern is unpredictable. The Titanium method to access the grid – by creating a point and using 
the point to calculate the index into the array - proved to be too slow. Therefore we have decided 
to move interaction phase’s computation kernel into native C code which understands the fluid 
grids’ structure and by-pass some code to support special Titanium arrays. After we moved the 
interaction phase into C code, we observed a 33% speedup. We think this kind of speed up is due 
to assumptions about the array layout (e.g., whether the array is 1-strided, 0-based and is not 
derived from operations such as slice, inject, permute, and restrict) that the native code can make 
but the Titanium runtime array implementation does not.  
 
The FFT kernel’s butterfly access pattern is a non-uniform access pattern to the fluid grid, and as 
a result, the pure Titanium version is quite slow as well. We obtained about 4 times speedup 
from moving the code into C. However, the strided memory access patterns in a straightforward 
FFT implementation still perform poorly on modern memory hierarchies.  Packages like FFTW 
optimize for these hierarchies by using recursive decompositions of the FFT to improve locality 
and they also optimize for other architectural features through an automatic tuning process. 
Another advantage of moving the FFT code into C is that it gives us the option of using pre-
tuned FFT packages such as FFTW. On the T3E, we linked the FFTW library into the native C 
code and use FFTW to take care of our FFT transformations; the calculations in Fourier space 
are done in C. Making this change gave us another 4 times speed up over the Navier-Stokes 
solver based on C code.  
 
NS Solver based on: Pure Titanium Native C FFTW 
Run time (in ms) 27737 7003 1730 
 
Thus, native interface solves two of Titanium’s weaknesses: the performance of non-uniform and 
unpredictable array access and the ability to interface into pre-tuned software packages. 
However, the part written in C will not be type checked by the Titanium type checker and is thus 
unsafe. Moreover, the part written in C may not be portable to other platforms. Therefore, the use 
of native C code in Titanium should be restrained only to cases where there is an obvious benefit. 
 

Partitioning Strategies 
As discussed above, the fiber point partitioning strategy is a critical piece in determining the 
speed of a simulation. We experimented with different partitioning strategies and eventually used 
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the performance model guided us to determine a good strategy on the T3E to run the torus and 
heart simulations.  
 
The most intuitive partitioning strategy is to allocate fiber points to the same processor that owns 
its fluid grid. But since the fiber points of the heart are located around the center, there is serious 
load imbalance problem, with the C term (Max no. of points per processor) unacceptably high. In 
fact, in the 8-processor partitions of the heart and torus using this strategy, the two fringe 
processors do not get any fiber points at all. 
 

 

 

 

 

Figure 2: A heart and torus partitioned to maximize locality. Each different color represent a fiber allocated 
to different processors. These are 8 processor partitions, but only six processors have fibers on them in either 

case. 

  
We tried some heuristics to load balance the torus. For example, using a “pizza-cutter” strategy 
to partition the torus gave us better performance numbers [7]. In that strategy, we partition the 
torus as though we are lying the torus down on a table and cutting it like a pizza. However, non-
symmetric models such as the heart do not readily lend themselves to these heuristics. 
 
The more general partitioning strategy is to maximize the locality of the fiber points, while 
retaining load balance. In this strategy, each processor is allowed a maximum number of fiber 
points, typically the average number of fiber points per processor. First, each processor gets as 
many fiber points that interacts with its fluid cells as possible, but not more than the limit. After 
that, some processors will have not enough points, and some will have points left over. The 
processors that do not have enough points will then ask for processors that have leftovers for 
points. Eventually all processors will have the same number of points. While this strategy 
reduces the C parameter (Max. no. of fiber points on a single processor) and Bij parameter (Size 
of bounding boxes on remote processors), it makes no attempt to lower the X parameter (Max. 
no. of processor boundary-crossing fibers on any single processor), unlike the pizza cutter. 
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Luckily, due to the low latency on the T3E (? ), communications due to fiber cutting processor 
boundaries is only a minor percentage of the total run time. 
 
 

 

 

 

Figure 3: Heart and torus partitioned with load-balanced strategies 

 
The run times of these two partition strategies for the heart are shown below:  
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Heart Simulation's Spread Force phase on T3E
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Heart Simulation's Interpolate phase on T3E
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Figure 4: Run time graphs for the two partitioning strategies on the T3E 

 
We see that the new partitioning scheme is several times more efficient than the naïve 
maximized-locality scheme. We notice that in the fiber activation phase, the new partitioning 
scheme is consistently about 6 times faster than the naïve scheme; while in the interaction 
phases, the new partitioning scheme is about 3 times faster. This is because the fiber points tend 
to aggregate around the center processors, making the processor in the center to do most of the 
work in the naïve scheme. The number of fibers in the most “worked” processor is about 6 times 
more in the naïve scheme, so we see a 6 times difference in fiber activation. But the advantage 
gained by having a more balanced load is slightly offset by needing to copy the bounding boxes 
during the interaction phases, so we only see a 3 times difference there. It is also important to 
point out that since we are doing the experiments on the T3E, where the network latency is 
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relatively low compared to CPU speed, so the communication inside the fiber activation phase is 
only a minor percentage of the total run time (6.2% on 64 processors). If we move to a machine 
with higher network latency, the communication inside the fiber activation phase will become 
significant. We have seen that millennium actually slows down in the fiber activation phase 
when we move from 16 processors to 32, since the fibers cut by processor boundaries have 
increased, and communication in fiber activation became a dominant factor. 
 
As is evident from the discussion, the optimal partitioning strategy depends on the machine 
architecture, in particular, the CPU speed and network latency and bandwidth. However, the 
partitioning strategy is designed to be outside of the generic immersed boundary package. This is 
to allow application writers to take into account factors not visible to the TiGIBS package, such 
as the communication and computation trade offs in the fibers activation phase, while designing 
their own partitioning strategies. For applications where the fiber activation phase is not a 
performance concern, we hope to write a tool that will help application writers to find a near-
optimally scalable partitioning strategy given information about a machine’s CPU and network. 
 
For our heart simulation, we achieved a 5.5 times speed up from 8 to 64 processors (the single 
processor speed cannot be measured as the application is too big to fit on one processor). The 
speed up is limited by two factors: 1) most fiber points are aggregated around the center and it is 
necessary to communicate the updates to the processor that owns the part of the fluid where the 
fibers are aggregated; and 2) the number of fiber cutting across processor boundaries is large 
enough to limit the speed up of the fiber activation part to about 5 times. 

Sparse array copy 
We noticed that in the interaction phases, although we are sending whole bounding boxes by 
Titanium’s bulk array copy across processors, we are not using all data within them. This led us 
to investigate the use of a new construct in Titanium array, the sparse array copy. Sparse array 
copy allows a Titanium program to copy a non-rectangular array remotely. Ideally, we would 
specify a non-rectangular array with only the fluid grid points that a processor need, and copy 
just that array, that would make the message size smaller and reduce communication overhead. 
 
Jason Duell, Wren Montgomery and Simon Yau investigated the use of sparse array copy on the 
interaction phase of the model [7]. They found that using the sparse array copy has a drawback: 
they need to construct the non-rectangular array to be used in the sparse copy. Since there can be 
more than one fiber point in a fluid grid cell, and each fiber point interacts with a 4x4x4 fluid 
sub-grid around it, a fluid grid can potentially need to interact with more than one fiber point. In 
fact, since the fiber points tend to aggregate near the center of the fluid grid, fluid grid cells 
normally interact with more than one fiber point. Making sure that a fluid grid cell is added to 
the non-rectangular array at most once is an issue. In effect, the algorithm that constructs the 
non-rectangular array needs to keep track of each fluid grid cell in the experiment and make sure 
that it doesn’t add the same grid cell into the non-rectangular array twice. In fact, this accounting 
overhead is so large that the speed gained by reducing network traffic is offset by this overhead, 
and sparse array copy does not work. 
 
Figure 5 shows the breakdown of the communication cost in the spread-force phase of a torus 
simulation on the Millennium. “Original” and “megabox” versions use the bulk array copy, 
“hash” and “boolean grid” versions use array copy, where they use a hash-table based and 
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Boolean grid based accounting mechanism respectively. As seen from the graph, the set-up cost 
of the two sparse array copy versions caused the communication cost of the sparse copy version 
to be several times greater than the bulk copy version.  
 
However, their work also suggested that in a simulation where less than 10% of the bounding 
box is filled (the torus has 60% filled), the sparse array copy would pay off. 
 
 

 
Figure 5. The communication cost of using sparse array copy.  

(Source: Duell, Montgomery, Yau [7]) 

We included the native codes in interaction phase and in the NS solver, including the code that 
calls FFTW, in the TiGIBS library, but not the sparse array copy. 

VIII. TiGIBS Adaptability 
To demonstrate TiGIBS’s adaptability, we have written three different simulations using the 
TiGIBS. 

Torus Simulation 
The torus simulation was written by Nathaniel Cowen from Courant Institute of Mathematics at 
New York University. It is a scaled-down version of the heart. TiGIBS was originally based on 
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this code. There are 65,000 fiber points in this model and a 64x64x64 fluid grid. Early 
performance tuning effort was done on this model on SGI Origin 2000 and the now cluster. 

 

 
Figure 6. Contracting Torus 

Heart Simulation/Experiment 800 
The heart simulation is the model developed by Dave McQueen and Charles Peskin at NYU [1] 
[2]. This model can be used in medical research such as evaluation of artificial heart valves. 
Most of the performance tuning of the TiGIBS has been done on this model on either the T3E or 
Millennium. 

Cochlea Simulation 
Juliann Bunn and Ed Givelberg from Cal Tech and University of Michigan used Immersed 
Boundary Method to simulate the cochlea [4]. Their code was based on C++ and was written 
using a different code base from the heart or torus. For instance, their fiber points are not 
arranged into fibers, but a two dimensional mesh. Jason Duell, Wren Montgomery and Simon 
Yau adapted the TiGIBS package to run part of the simulation (the oval window) [7]. The 
TiGIBS framework proved to be adequate for the purposes of simulating the oval window. 
 
 

 

 

 

 

 

 

 
Timestep 0 Timestep 4 Timestep 8 Timestep 12 

Figure 7. Oval window simulation 
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IX. Evaluation 
Depending on the partitioning strategy and machine involved, the TiGIBS library scales 
reasonably well. We see a 5.5 times speed up from 8 to 64 processors on the T3E. Unfortunately 
the speed up is dependent on the fiber partitioning strategy and the latency and bandwidth of the 
machine on which the simulation is run. 
 
For the runs on the T3E, there is no obvious performance bottleneck – the run time of all four 
phases are roughly the same: 

Run time breakdown for heart simulation on T3E, 
using 64 processors
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fiber

spread froce
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Figure 8. Run time breakdown of Heart Simulation on T3E 

 
The interaction phases each account for about 1/3 of the run time, as the NS Solver account for 
1/5 and fiber calculation account for the rest. 
 

X. Future Work 
Although we have demonstrated TiGIBS to be an adaptable package with reasonable 
performance, there still is room for future work. 
 
By using FFT based NS solver, we limit our fluid partitioning scheme to slab-decomposition. A 
multigrid-based solver would most likely perform best with the fluid grid partitioned into cubes, 
rather than slabs, and may allow for better simultaneous load balancing and locality for the fiber 
distribution.  An even better option appears to be an adaptive mesh, which would place finer 
grids where there is most of the fluid activity.  The fine fluid grids would likely exist in the part 
of physical space as the fibers, so the fiber points and fluid mesh could use the same partition 
and still exhibit good load balance.  The multigrid solver also scales linearly with the problem 
size, rather than the O(n log n) scaling of the FFT, although our performance model indicates 
that the FFT is still quite efficient for the problem sizes considered. 
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The TiGIBS is very generic. As a result, the application writers need to do more work to adapt it 
to their own simulations. We can have sub-packages that can handle some subsets of the 
immersed boundary simulations. For example, a sub-package that handles collection of 1D 
meshes will be useful for the heart and contractile torus simulation; while a sub-package that 
handles collection of 2D meshes will be useful for the cochlea simulation. 
 
Since the fiber partition scheme is a major factor that affects the performance of the TiGIBS 
library, it would be helpful to have an automatic tool that helps application writers partition their 
fibers. Such a tool should be able to take in the network and computational characteristics of a 
machine, a description of the fiber points, and automatically generate an output specifying which 
fiber point goes to which processor.  
 

XI. Conclusion 
We have shown that it is possible to create a generic library in Titanium to enable application 
writers to write immersed boundary code for distributed platforms with minimal effort. We have 
adapted the mammalian heart simulation to the distributed platform using the library, which is 
the first such implementation of this heart model.  In addition, we have demonstrated the 
flexibility of our software by using it for part of a cochlea model and a simple synthetic torus.  
 
We also developed a performance model of the heart simulation, which can be used to estimate 
the scalability of our software on other machines.  The model requires as inputs the latency and 
bandwidth of communication, as observed by Titanium applications, and the cost of floating 
point.  The floating-point estimate is best obtains by running serial code on one processor of the 
machine of interest, as performance varies widely between phases of the computation and is not 
a simple function of the peak floating point rate.   
 
Our software has been extensively tuned, speeding up by more than 10x since our initial 
implementation.  Some of this tuning is algorithmic, having to do with the partitioning of fibers 
and data across processors, which would be an issue in any parallel programming system.  Our 
experience also highlights some of the performance issues of Titanium, such as the high 
overhead of array abstraction, when it is not used with irregular or strided memory accesses.  
While our current implementation addressed this by using native C code for some key kernels, in 
the long term, we believe this could be addressed by provided a less general array abstraction in 
Titanium or by a more highly optimized compiler and runtime that takes advantage of the 
common special cases that occur in our application. 
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Appendix: Titanium Generic Immersed Boundary Software 
API 
package tigibs; 
 
/* Class to represent a fiber point. All fiber points in TiGIBS must extend 
this class */ 
public abstract class IbPoint { 
  // id number. 
  int id; 
 
  // the Eulerian coordinates. 
  public double x_coord; 
  public double y_coord; 
  public double z_coord; 
 
  // velocity of this point. 
  public double x_vel; 
  public double y_vel; 
  public double z_vel; 
 
  // the force this point is spreading onto the fluid.  
  public double force_pt1; 
  public double force_pt2; 
  public double force_pt3; 
 
  // constructor 
  public IbPoint (int pid, double x, double y, double z);  
  // field extractors 
  public inline int getId (); 
  public inline double getXCoord (); 
  public inline double getYCoord (); 
  public inline double getZCoord (); 
  // zeros out the velocity 
  public void zeroOutVel (); 
} 
 
/* TiGIBS simulation object. */ 
public class Tigibs { 
  // Register a fiber point in the object */ 
  public void registerPoint (IbPoint p);  
  // Register a marker in the object (markers are points, but don’t spread 
force 
  public void registerMarker (IbPoint p);  
  // Performs the spread force, NS Solver, and interpolate velocity steps  
  public single void advanceOneIteration ();  
  // remove all points from the object  
  public single void unregisterAllPoints ();  
  // constructor 
  public single IbMain (int single numOfCellsX, int single numOfCellsY, int 
single numOfCellsZ); 
  // field extractor of the fluids 
  public single DistArrayDouble3d getU (); // dx/dt  
  public single DistArrayDouble3d getV (); // dy/dt  
  public single DistArrayDouble3d getW (); // dz/dt  
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  public single DistArrayDouble3d getF1 (); // force vector  
  public single DistArrayDouble3d getF2 (); 
  public single DistArrayDouble3d getF3 ();  
  public single DistArrayDouble3d getP (); // pressure  
  // updates the coordinates of the registered points according to its 
velocity 
  public void move (); 
} 
 
 
 


