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Abstract

Titanium is a parallel programming language that presents a single global address space for all
concurrent computations. To improve performance on distributed memory architectures, programmers
may explicitly qualify selected references as local to a single process. This paper proposes a static inference
system for automatically applying “local” qualifications wherever possible, within the constraints of the
Titanium type system. A partial prototype implementation of the analysis has been completed with
the help of the Bane analysis toolkit. We describe and evaluate the analysis itself, as well as the
implementation strategy by which the analysis has been deployed.
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1 Introduction

Titanium is a parallel programming language for high performance scientific computing. Titanium presents
a logically global address space to programmers. However, the components of a Titanium program may
be distributed across several distinct computers with no physically shared memory. Titanium combines
wide references with a message-passing runtime system to present the illusion of shared memory when none
actually exists. Wide references are more costly than simple local addresses; in order to offset this cost,
programmers may explicitly declare selected references as local to a single computational unit, by adding
the “local” type qualifier to any field, variable, or formal parameter declaration.

Unfortunately, explicit qualification is an imperfect solution. Programmers may miss many opportunities
for local qualification, particularly as data types grow more complex. Also, existing legacy code written in
other languages, or targeted at true shared memory machines, may prove too difficult or time-consuming to
hand-qualify for maximal performance. For this reason, we wish to automate the process of adding “local”
qualifications to a body of Titanium code.

The automation strategy uses a static analysis that resembles a simple form of type inference. We have
used the Berkeley Analysis Engine (Bane) to implement the analysis. As described by its creators:

Bane is a toolkit for constructing program analyses such as data-flow and type inference
systems. . . . Bane is constraint-based, meaning that analyses are formulated as systems of con-
straints generated from the program text. Constraint resolution (i.e., solving the constraints)
computes the desired information.[1]

In this case, the constraints are dictated by the Titanium type system. The “desired information” is the
largest set of global references that may be safely requalified as local.

The ultimate purpose of this research is twofold: first, we wish to assess the effectiveness of static analysis
at aggressively adding “local” qualifications to Titanium programs. Second, we wish to evaluate the broader
viability of Bane as a tool for developing other Titanium analyses in the future.

The remainder of this paper is organized as follows. Section 2 describes the Titanium memory model in
greater detail and motivates the analysis that follows. Section 3 formalizes the inference rules that drive the
analysis. In section 4 we outline the implementation strategy by which Bane and the Titanium compiler
have been integrated, and present preliminary results from using the analysis. Section 5 reviews related
work, suggests future research directions, and summarizes our conclusions.

2 Background and Motivation

We now describe the Titanium language in greater depth, focusing primarily on Titanium’s memory model.
We highlight some difficulties that the memory model creates for programmers, and develop the motivation
for using automated inference to simplify the programming task. The reader who is already an experienced
Titanium programmer may wish to skip ahead to section 2.5, wherein we highlight problems that remain
unsolved by the current Titanium memory model.

2.1 Titanium Basics

Titanium uses the syntax and semantics of Java1 [12], and adds a number of features to support the needs of
the scientific computing community. In this paper, we mention only those features pertinent to the analysis
at hand; see [25] for a more complete introduction to the language as a whole, or [13] for a draft reference
manual.

Two notable Java features are absent from Titanium. First, Titanium has no bytecodes or virtual
machine. Titanium programs are compiled to native code and executed directly on the host system. Second,
threads are not the dominant mechanism for expressing concurrency. Rather, Titanium programs use a single
program, multiple data (SPMD) model of parallelism. In this model, several identical copies of a program
are executed simultaneously, each on different data. These multiple concurrent executions, or Titanium

1“Java” is a registered trademark of Sun Microsystems, Inc.
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Figure 1: Local allocations. Two processes are executing, each in its own region. Each process has
independently allocated an instance of class Foo in its own local region. Process 0’s instance is then broadcast
to all processes. In process 1, this broadcast produces a region-spanning reference.

processes, may take a variety of forms, ranging from lightweight threads with shared memory to truly
independent processes executing on physically distinct computers connected by a fast network. Processes
may synchronize or share data under explicit programmer control, but otherwise operate independently.
This model is well suited to many scientific programming problems, where a generally uniform computation
is to be applied across a large body of data.

2.2 Local/Global Memory Model

Titanium is targeted at both shared and distributed memory architectures. The memory model presented
to programmers is a hybrid, reflecting this wide variation in supported host platforms.

The address space of a Titanium program is partitioned into a set of distinct local memories, or regions.
Each Titanium process is associated with a single region, which provides memory to store that process’s
stack and local variables. Heap allocations requested by a process are also satisfied using memory drawn
from the associated region.

When Titanium is running in a distributed memory environment, each region corresponds to the con-
tiguous physical memory available on one host processor. Each Titanium process, then, uses the region local
to the host on which it is executing. On the other hand, on a shared memory SMP, one region represents
the entire system, and all processors allocate out of this single shared pool.

The Titanium runtime presents programmers with a single global address space, formed by the union of all
local memory regions. References (analogous to C pointers) may address memory across region boundaries.
Any process may read or write data in any region, at any time, provided that it has a valid reference to that
data. Since allocations take place locally, Titanium provides communications primitives that let processes
gain access to objects allocated elsewhere. For example, the expression

broadcast E from p

is a one-to-many communication. All processes rendezvous at the broadcast expression. The expression E
is evaluated only on process p, and the result is then communicated to all processes. If E is a reference to
some allocated object, then all processes will receive references to the same single object. The object itself is
not copied to all processes; all that is communicated is a reference to the object’s location within the global
address space. Titanium also provides an “exchange” primitive for many-to-many communication, but we
will not describe it further here, except to note that it also produces region-spanning references.

Figure 1 illustrates the notion of local regions and a global address space. Assume a one-to-one mapping
between processes and regions. Two processes are executing the following program text:

Foo f = new Foo();
Foo g = broadcast f from 0;

Each process has its own local variables f and g. Each process independently allocates an instance of class
Foo, and stores a reference to the new instance in its own local variable f. The broadcast then communicates
the value of process 0’s f to all other processes. All local variables g refer to process 0’s instance of Foo.
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if (p.region == MyRegion)
result = *p.addr;

else
result = RemoteRead(p.region, p.addr);

Figure 2: Dereferencing a wide reference. Typical C code sequence for dereferencing a wide reference.
Because “result” may receive its value from an opaque function call, the compiler is unlikely to be able to
effectively optimize any code that uses the resulting value.

2.3 Wide References: A Mixed Blessing

A global address space provides some immediate benefits to the application programmer. Program develop-
ment is simplified without the need to consider memory boundaries. Data sharing reduces to a simple matter
of passing references around, avoiding the complications of planning out an explicit communication strategy.
A global address space maps well onto a shared memory system, making it easier to port existing codes and
algorithms. Users who only intend to use Titanium on shared memory hardware can ignore regions entirely.

Unfortunately, in a distributed memory environment, a global address space is a costly illusion. Since
the global address space is larger than the address space of any single machine, global references must
include more information than just a simple local memory address. These wide references are actually pairs,
consisting of a region number and a memory address within that region. Dereferencing a wide reference
requires several steps, as illustrated in Figure 2.

If the reference addresses memory within the local region, then the corresponding memory address may
be used directly as a standard pointer. If the reference addresses memory from a remote region, then some
form of network activity is required to issue a remote request for the value in question. The current Titanium
distributed memory back end reuses an existing message passing system from Split-C, an earlier language
with a similar memory model [11]. Higher-performance runtime systems are currently being studied [17].

Even the fastest messaging system does nothing to reduce the costs of global references to local data,
though. Assuming word alignment of structures, a wide reference may consume twice as much memory as
a simple pointer. More worrisome than the space costs, though, are the time costs. As Figure 2 illustrates,
using a wide reference to local data requires comparing two values, ignoring a branch to the remote fetch
clause, dereferencing the local address, and branching to the end of the entire conditional. The presence
of a branch, combined with the possibility of a function call, makes it extremely difficult for an optimizing
compiler to improve code that uses the result of a dereference. The Titanium compiler generates C code as
its output, which is subsequently compiled to native code by a traditional C compiler. It is imperative that
the generated C code avoid constructs that confound optimization in the C compiler.

Benchmarking quantifies these concerns. A Split-C benchmark was run using various strategies to im-
plement wide pointers, which directly correspond to Titanium’s wide references. The benchmark, EM3D,
repeatedly walks across an irregular bipartite graph performing a simple computation. We can estimate the
cost of wide references by computing the average time required per edge when all data is stored in the local
memory region. In Table 1, we present times collected on a Thinking Machines CM-5 and partial times
collected on a Cray T3D. These findings were originally presented in [15] and [24], respectively.

The benchmark reveals that the performance cost of using wide references for local data can be profound.
Even when the code for reading and writing through wide references is inlined, the CM-5 shows nearly a
75% slowdown compared with simple pointers. This is largely due to lost opportunities for optimization.
Extensive manual optimization included relocating code into the “local” clause of the locality test to avoid a
branch. Even such heroic efforts only bring performance to within 13% of simple pointers, probably due to
less effective register use and the increased time cost of moving larger amounts of data around in memory.

2.4 Explicit Qualification

A 75% overhead for every reference is unacceptable in high performance computing. Furthermore, one
expects that in a well-crafted concurrent program, communication and data sharing will be kept to a strict
minimum to maximize parallelism. Most references will never span regions, and programmers can identify
those few that do.
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CM-5 T3D
function 2.8 µsec/edge 1.19
inline 2.0 0.71
optimized 1.3 0.66
narrow 1.15 N/A

Table 1: Costs of overusing wide references. Benchmark program is the Split-C version of EM3D,
which repeatedly performs a simple computation across the edges of an irregular bipartite graph. Values
reported are the average cost of traversing a single edge, in microseconds. “Function” uses wide pointers and
requires a function call for every read or write. “Inline” inlines wide pointer code directly at the point of
use. “Optimized” uses extensive manual optimization and likely represents the theoretical best performance
possible for wide references. “Narrow” uses simple pointers, and represents a level of performance only
possible with true, physically shared memory.

Titanium provides an explicit declaration qualifier, “local”, for just this reason. A reference may be
qualified as local to indicate that it never refers to data in a remote memory region. This qualification is
available when declaring fields, local variables, formal method arguments, method return types, and even
the implicit “this” parameter to non-static methods. Wherever a named reference is used, the reference
may be qualified as local.

Locally qualified references may be implemented using simple, narrow pointers, neatly avoiding the time
and space costs described earlier. Furthermore, because the qualification is part of a reference’s type, pro-
grammers’ claims of locality may be statically checked by the compiler. Allocations produce local references,
so the result of a “new” expression may be stored in a local reference. Global communication primitives like
“broadcast” produce global values; storing the result of a broadcast into a local reference is a type error,
detectable at compile time.

Revisiting the example from Figure 1, local variable “f” always refers within the local region, and could
safely be qualified as local. The qualification appears after the type name, so “f” could be redeclared as
“Foo local f = . . . ;”. However, local variable “g” holds the result of a broadcast, and so cannot be qualified
as local.

Titanium also allows implicit promotion, or widening, of references from local to global. If “f” were a
local reference and “g” were global, as described above, then the assignment “g = f” would be perfectly legal.
This is analogous to using, for example, a String in a context where an Object is expected. Indeed, these
two ideas combine orthogonally. In the statement “Object thing = new Foo();”, the allocation produces a
reference of type “Foo local”, which is promoted to type “Object local” and then widened to type “Object”.

Narrowing from global to local requires an explicit cast. At runtime, the global reference is checked to
see if it addresses memory in the local region. If it does, then a narrow local reference to the same object
is produced. If the global reference genuinely does reach into a different region, though, the cast fails and
an exception is thrown. Again, the behavior is analogous to a checked downcast, say from Object down to
String.

Titanium has no explicit “global” qualifier. Global references are assumed by default. This promotes
the notion of a global address space, which simplifies application development for reasons stated earlier. The
intention is that programmers can add local qualifications as needed to improve performance once the basic
program logic is working.

2.5 Problems Remain

Unfortunately, explicit qualification is only a partial solution. It may not be reasonable to expect program-
mers to qualify their references aggressively enough to achieve maximal performance. Qualification becomes
particularly difficult for compound data types, such as arrays. Java arrays are not truly multidimensional;
each level of indexing in an array crosses another reference. At each level, then, the programmer has the
option of adding local qualification. The situation quickly becomes ridiculous.

For example, a programmer may wish to establish a private table of Foo instances arranged in rows and
columns. The table is never shared with other processes; all data lives within the local region. The full
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declaration for such a construct would be:

Foo local [] local [] local myTable;

Reading the declaration from right to left, myTable is a local array of local arrays of local Foo’s. In general,
an n-dimensional array contains n + 1 opportunities for local qualification, giving the programmer 2n+1

possible declarations. Given this large space of choices, it is likely that the typical programmer will miss
many opportunities. The problem will be particularly pronounced if the programmer is porting unfamiliar
code originally designed for a shared memory architecture.

The same issues apply when dealing with legacy code. Titanium incorporates a large portion of the
standard Java class library into its own runtime environment. The complete contents of the java.io, java.lang,
and java.util packages are available to Titanium programmers. The Titanium compiler produces native code
directly from Sun’s Java source code for these packages. This lets Java programmers step up to SPMD
programming while still using familiar classes like String, InputStream, and Hashtable.

However, this large body of existing code was written for Java, not Titanium. These three packages
comprise some sixteen thousand lines of source code without a single “local” qualifier. None of this code
uses Titanium’s broadcast or exchange communications primitives; but in the absence of explicit qualifiers,
every variable, field, and parameter defaults to being a wide, global reference. Every method is assumed to
return global references to its callers, making it even more difficult for programmers to use local references in
their own code. Manually annotating this large body of legacy Java code would be extraordinarily tedious,
and would need to be redone with each new Java Development Kit release from Sun. Yet without reducing
these global references to local, it may be impossible to achieve acceptable levels of performance.

Clearly, then, some more automated mechanism is needed. We would like to statically infer local qualifi-
cations wherever possible. Only those references that may actually span regions should remain global. This
will give us all of the benefits of a global address space while only deploying wide references where they are
actually needed.

3 Formalizing the Analysis

We now formalize the analysis that drives local qualification inference. First, we shall describe a small
object-oriented language, Tin. Tin has been crafted to resemble Titanium, but has been greatly simplified.
We then develop a set of inference rules that allow us to add local qualifications to well-typed Tin programs.
Finally, we describe how to extend the Tin inference system to include other Titanium features.

3.1 Tin: A Tiny Titanium

Tin is a small object-oriented language that resembles a simplified Titanium. Tin is class-based, with explicit
subclassing that forms a static tree. Classes are collections of named fields and methods, and allow creation
of instances.

The local qualification analysis is intended to function as part of a more complete compiler. We can
stipulate that analysis take place after type checking and name resolution. Thus, we can assume that any
expression has a known static type, and that this type is available to our qualification inference rules. We
also have easy access to information about classes and the class hierarchy, so it is reasonable to refer to the
superclass of an arbitrary class, or to the superclass method that a given class method may override.

3.1.1 Tin types

A qualified Tin type T is a pair, consisting of a locality qualifier q followed by an underlying class C. A
locality qualifier may explicitly require a local or global reference, or the qualifier may be unknown and
therefore subject to inference. A class may be a named class declared elsewhere, or it may be an array of
some element type:

T ::= 〈q C〉
q ::= local | global | α
C ::= ClassName | array T

5



Recall the example given earlier of a fully local two-dimensional array of Foo. The Titanium type for
this construct was “Foo local [] local [] local”. The corresponding Tin type would be:

〈local array 〈local array 〈local Foo〉〉〉
Observe that that Titanium types are most legibly read right-to-left, whereas Tin types are most legibly
read left-to-right.

Additionally, we define a distinct set of method types:

F ::= 〈T0 × T1 × · · · × Tn → Tf〉

The domain of a method type is required to contain at least one type T0 corresponding to the ubiquitous
implicit “this” parameter. Remaining domain types, if any, provide the types of explicit formal parameters.
Although method types never appear in the text of a Tin program, they will be useful for certain definitions
and inference rules that follow.

3.1.2 Tin class declarations

A Tin program consists of some number of class declarations. Each class declaration specifies the class
name and an optional superclass. The body of a class declaration consists of a list of zero or more member
declarations:

class ClassName [inherits ClassName] {
memberDecl
. . .
memberDecl

}

A member declaration is either a field declaration or a method declaration. A field declaration consists
of a qualified type T followed by some field name b. A method declaration consists of a qualified return type
T , some method name f , declarations for each formal parameter, and a method body e:

memberDecl ::= fieldDecl | methodDecl
fieldDecl ::= T b;

methodDecl ::= T q f(T x, . . . , T x) { e; }

Note the extra locality qualifier q that appears between the return type and method name in a method
declaration. This qualifier applies to the implicit this parameter. The qualifier determines whether this is
local or global within the body of the method.

3.1.3 Tin expressions

Tin expressions resemble a restricted subset of Titanium. The complete expression grammar is given in
Figure 3.

Method invocation is given by production 1. Local variable declarations are allowed by production 2.
The declaration syntax is borrowed from functional programming in order to simplify the inference rules that
follow. Local variables and formal method parameters may be accessed using production 3. Production 4
provides access to self in the style of Titanium, Java, and C++. Productions 5 and 6 provide field access
and array indexing in the typical manner. For simplicity we intentionally ignore the semantic question of
what it means to index an array in a language with no integers.

Destructive assignment is governed by productions 7, 8, and 9. Observe that only certain expressions may
receive assignments. One may not, for example, assign to the result of an allocation or method invocation.
These restrictions are consistent with the Java definition of “named or computed variables”[12], or what C
and C++ define as “lvalues”[4, 3].

Sequential evaluation uses the expected syntax in production 10. New instances of a given class may
be allocated using the syntax of production 11. Note that the type here is unqualified; no locality qualifier
is needed because all allocation is assumed to take place locally. Lastly, production 12 provides global
communication.
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e ::= e.f(e, . . . , e) (1)
| let x : T = e in e (2)
| x (3)
| this (4)
| e.b (5)
| e[e] (6)
| x = e (7)
| e.b = e (8)
| e[e] = e (9)
| e ; e (10)
| new C (11)
| broadcast e from e (12)

Figure 3: Tin expression grammar.

3.2 Type Constraints

We now define several important relations on components of the Tin type system. Using these relations, we
develop a simple language of logical assertions about types. In the inference rules that follow in section 3.3,
conjunctive sets of these assertions form the constraint systems that we wish to solve.

3.2.1 Relations on qualifiers

The fixed locality qualifiers form a trivial two-point lattice. Since local references are implicitly promoted
to global, we axiomatically define global to subsume local:

local ≤ q q ≤ global

Qualifier equality is trivial:

local = local global = global

3.2.2 Relations on qualified types

Subsumption of qualified types takes two forms, strong and weak. We say that type T is strongly subsumed
by type T ′ if all locality qualifiers within the complete, deep structure of T ′ exactly match the corresponding
qualifiers within T . However, if type T has deeper structure than type T ′, we place no additional constraints
on those unmatched qualifiers. For example, 〈global array T 〉 is strongly subsumed by 〈global Object〉
for any T . The converse, however, does not hold. When type T is strongly subsumed by type T ′, we write
“T E T ′”. The following rules define strong subsumption:

q = q′

〈q ClassName〉 E 〈q′ C〉
q = q′ T E T ′

〈q array T 〉 E 〈q′ array T ′〉

Weak subsumption allows promotion from local to global, but only at the topmost level within the
type structure. Deeper levels of array nesting must be qualified identically, using the strong subsumption
rules described above. Thus, 〈local array T 〉 is weakly subsumed by 〈global Object〉 for any T . However,
〈global array 〈local C〉〉 is not weakly subsumed by 〈global array 〈global C〉〉, because qualifier promo-
tion is not permitted below the topmost level. When type T is weakly subsumed by type T ′, we write

7



r ::= q ≤ q | q = q
| T ≤ T | T = T
| F ≤ F | F = F

Figure 4: Tin constraint grammar.

“T ≤ T ′”. The following rules define weak subsumption:

q ≤ q′
〈q ClassName〉 ≤ 〈q′ C〉

q ≤ q′ T E T ′
〈q array T 〉 ≤ 〈q′ array T ′〉

A pair of qualified types are equal if they have identical deep structure and if all corresponding qualifiers
are equal:

q = q′

〈q ClassName〉 = 〈q′ ClassName〉
q = q′ T = T ′

〈q array T 〉 = 〈q′ array T ′〉

3.2.3 Relations on method types

Subsumption of method types obeys the expected form, with contravariant constraints on subsumed formal
parameters.

Tf ≤ T ′f ∀i ∈ [0, n] . T ′i ≤ Ti
〈T0 × T1 × · · · × Tn → Tf〉 ≤ 〈T ′0 × T ′1 × · · · × T ′n → T ′f 〉

Equality of method types is straightforward:

Tf = T ′f ∀i ∈ [0, n] . T ′i = Ti

〈T0 × T1 × · · · × Tn → Tf〉 = 〈T ′0 × T ′1 × · · · × T ′n → T ′f 〉

3.2.4 Constraint language

Given these equality and subsumption relations, we can formulate a simple language of logical assertions.
This language is presented in Figure 4. We allow assertions on qualifiers, qualified types, and method types.
Note, however, that any assertion on a pair of qualified types or method types may be decomposed into a
finite set of assertions on qualifiers. The constraint solver ultimately manipulates qualifiers alone, with no
knowledge of type structure.

3.3 Qualification Inference for Tin

We now present a set of monomorphic qualification inference rules for Tin programs. The rules are applied
in the context of a set of constraints. The constraints represent the minimal required relationships among
qualifiers and types within a program. Any set of qualifiers and types that satisfies the constraints yields
a correct program. For aggressive optimization, we are interested in the unique set of qualifiers and types
that uses “local” wherever possible while still satisfying the constraint system.

As stipulated above, the analysis is cast as part of a larger compiler, with rich and complete static type
information. The static judgments drawn from this information are summarized in Figure 5. In order to
simplify the symbology, we assume that a static, context-sensitive type environment is ubiquitously available
rather than threading the type environment through and among all of the inference rules. For example, the
inference rule for the “let” construct does not explicitly create a type binding for the bound variable. Rather,
we assume that preceding compiler stages have already managed this. Similarly, the judgment “this : T”
refers to the static type of this in a particular context; this may have a completely different static type in
a different context.
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b : T Field b has static qualified type T .
x : T Local variable or formal parameter x has static qualified type T .

this : T Self parameter has static qualified type T .
f : F Method f has static method type F .

Figure 5: Static judgments.

` e : T,R Expression e has inferred qualified type T under constraints R.
` methodDecl : R Method declaration methodDecl type checks under constraints R.

Figure 6: Inferred judgments.

Figure 6 summarizes the new judgments expressed by the inference rules themselves. Inference on ex-
pressions yields an inferred qualified type and a corresponding set of constraints. Inference on method
declarations yields a set of constraints for the method as a whole. In general, the inference rule for any
construct yields a set of constraints that includes the union all subconstructs’ constraints plus some finite
set of additional constraints particular to the language construct at hand.

3.3.1 Method invocation

Method invocation is straightforward. We require that the dispatching instance be weakly subsumed by the
implied “this” parameter. We likewise require that each of the actual parameters be weakly subsumed by
the corresponding formal parameter. The type of the entire expression is the result type of the method:

f : F
∀i ∈ [0, n] . ` ei : T ′i , Ri

F = 〈T0 × T1 × · · · × Tn → Tf〉
F ′ = 〈T ′0 × T ′1 × · · · × T ′n → Tf 〉
R =

(⋃
i∈[0,n]Ri

)
∪ {F ′ ≤ F}

` e0.f(e1, . . . , en) : Tf , R

3.3.2 Variable declaration and access

Name binding introduces a new program variable into the type environment for the duration of the binding.
The initialization expression must be weakly subsumed by the declared type of the new program variable.
When the locality qualification is an unknown α, assume that this is a “fresh” constraint variable that does
not already appear in any constraint within the constraint system.

` e0 : T0, R0

` e1 : T1, R1

R = R0 ∪R1 ∪ {T0 ≤ T}
` let x : T = e0 in e1 : T1, R

Access to a local variable or formal parameter simply requires locating its static type as recorded by the
compiler’s type checking phase. The “this” construct is handled identically:

x : T
` x : T, ∅

this : T
` this : T, ∅

9



process 0 process 1

e instance
of Foo

e.b instance
of Bar

Figure 7: Global objects with local fields. Suppose that e is of type 〈global Foo〉, and that it refers to
an instance in a remote region. Suppose that b is a field of type 〈local Bar〉. Since b is local, then e.b must
be in the same remote region as e. Thus, e.b is also global.

3.3.3 Field and array access

Field access is subtle. Consider the expression e.b. If b was declared as a global field, then e.b is global as
well, regardless of the locality qualification of e.

However, if b was declared as a local field, then we must also consider the type of the containing instance
e. If e is also local, then we are accessing a local field within a local object, and therefore e.b is local as well.

If b is local and e is global, then we have an interesting situation, presented visually in Figure 7. Such a
configuration suggests that e addresses an object from a remote memory region, and that field b within this
remote object addresses memory within the same remote region. Thus, if e is global then e.b must be global
as well.

In general, then, e.b has the same underlying class as b, but must be qualified as global if either e or b is
global. Only when both e and b are local can e.b be local as well. The following inference rule codifies these
constraints, where α is a fresh constraint variable:

` e : T0, R0 T0 ≡ 〈q0 C0〉
b : Tb Tb ≡ 〈qb Cb〉

R = R0 ∪ {q0 ≤ α} ∪ {qb ≤ α}
` e.b : 〈α Cb〉, R

Array indexing creates an identical set of issues. The inference rule for array access directly parallels the
rule for field access presented above, except that we must also include any additional constraints produced
by the index expression, where α is again a fresh constraint variable:

` e0 : T0, R0 T0 ≡ 〈q0 array Tb〉
Tb ≡ 〈qb Cb〉

` e1 : T1, R1

R = R0 ∪R1 ∪ {q0 ≤ α} ∪ {qb ≤ α}
` e0[e1] : 〈α Cb〉, R

3.3.4 Assignment

Assignments to local variables simply require that type of the value being assigned be weakly subsumed by
the type of the recipient:

x : Tx
` e : Te, Re

R = Re ∪ {Te ≤ Tx}
` x = e : Tx, R

Assignment to fields is more complex. The issues are similar to those presented earlier for field access.
Recall that the special case concerned accessing a local field within a global object. The result of such an
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access must always be global. However, consider the consequences of assigning to such a field. If the field
access yields a global value, then it appears that one should be able to assign a global value into the field.
However, the field is declared local: it is too small to accommodate a wide global reference. Furthermore, the
semantics of having a local field dictate that it not cross region boundaries. Thus, we must forbid assignment
into local fields within global objects. Phrased differently, when we observe an assignment into a field, if
the object containing the field is global, then the field must be global as well. The assigned field must be at
least as global as the containing object.

Of course, the field must also be at least as global as the value it is about to receive. This is the same
subsumption constraint that applies to simple local variable assignment. Thus we need two constraints, as
expressed by the following rule:

` e0 : T0, R0 T0 ≡ 〈q0 C0〉
b : Tb Tb ≡ 〈qb Cb〉

` e2 : T2, R2 T2 ≡ 〈q2 C2〉
R = R0 ∪R2 ∪ {q0 ≤ qb} ∪ {T2 ≤ Tb}

` e0.b = e2 : Tb, R

Assignment into an indexed array creates an identical set of issues. The inference rule for array assignment
directly parallels the rule for field assignment presented above:

` e0 : T0, R0 T0 ≡ 〈q0 array Tb〉
Tb ≡ 〈qb Cb〉

` e1 : T1, R1

` e2 : T2, R2 T2 ≡ 〈q2 C2〉
R = R0 ∪R1 ∪R2 ∪ {q0 ≤ qb} ∪ {T2 ≤ Tb}

` e0[e1] = e2 : Tb, R

3.3.5 Other expression constructs

The remaining inference rules are quite simple.
Sequential evaluation requires that inference be applied to both subexpressions. Borrowing from func-

tional programming, we use the type of the last subexpression as the type of the sequence itself:

` e0 : T0, R0

` e1 : T1, R1

R = R0 ∪R1

` e0 ; e1 : T1, R

Allocation always produces a local reference to the requested underlying class:

` new C : 〈local C〉, ∅

Broadcasting always yields a global reference with the same underlying class as the expression being
transmitted:

` e0 : 〈q0 C0〉, R0

` e1 : 〈q1 C1〉, R1

R = R0 ∪R1

` broadcast e0 from e1 : 〈global C0〉, R

3.3.6 Class and method declarations

Inference on a method declaration entails two tasks. First, we must ensure that the inferred type of the
method body can be subsumed by the static return type. Second, if the method overrides some superclass
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method, we must ensure that the two methods’ types match exactly.2 For any method f , let super(f) be
the closest ancestral superclass method overridden by f , or “⊥” if no such superclass method exists. Then:

super(f) =⊥
f : F F ≡ 〈T0 × T1 × · · · × Tn → Tf〉

` e : Te, Re
R = Re ∪ {Te ≤ Tf}

` Tf q f(T0 x0, . . . , Tn xn) { e; }, R

super(f) : F ′

f : F F ≡ 〈T0 × T1 × · · · × Tn → Tf 〉
` e : Te, Re

R = Re ∪ {Te ≤ Tf} ∪ {F = F ′}
` Tf q f(T0 x0, . . . , Tn xn) { e; }, R

Inference upon a class entails inference upon all methods within that class. Inference upon a Tin program
entails inference upon all classes within that program. The ultimate constraint system to solve consists of
the union of all constraint systems generated for all methods within all classes comprising the complete
program.

3.3.7 Solving the constraint system

Given the global constraint system that describes the complete program, we may solve the system for all
unknown type qualifiers. Any solution binds all qualifiers to local or global. The unique least solution is
the one that binds the greatest number of qualifiers to local. This solution represents the most aggressive
possible monomorphic use of local references within the program, although a proof of this claim is beyond
the scope of this paper.

3.4 Tin to Titanium: Extending the Analysis

The Tin language is but a small subset of Titanium. However, the inference analysis for Tin does address
the majority of important issues that arise in a full Titanium analysis. We now sketch how the analysis can
be extended to encompass other important Titanium features. These descriptions are intentionally brief,
but by now the astute reader should be capable of filling in the missing details.

3.4.1 Simple cases

Tin explicitly distinguishes local, global, and inferred (α) qualification. Titanium provides only explicit local
qualification, in the absence of which global qualification is assumed. The Titanium analysis treats all of
these implicit global qualifiers as subject to inference. This lets us deploy local qualifiers aggressively in
large preexisting code bases, such as the standard Java class library.

Native methods are an exception to this rule. Since the compiler has no access to native code, it
cannot simply assume that a native method’s formal parameter can be changed from global to local without
introducing errors. Similarly, the return value of a native method might be the result of some global
communication; inferring a local return type is unsound, since the analysis does not have access to the
method’s implementation. For this reason, native methods are treated pessimistically. All formal parameters,
implicit “this” parameters, and return types that are not qualified as local are assumed to be global and
not subject to inference. A similar approach could be taken in any situation where only partial information
is available. For example, the analysis could accommodate separate compilation by forcing conservative
analysis at module interface boundaries.

Titanium’s type system includes more than just classes and arrays, but the additional features do not
significantly complicate matters. Primitive types have no qualifiers, so primitive expressions simply glide
through the analysis without affecting the constraint systems in any way. Immutable classes are similar to
normal classes, but immutables do not introduce a qualifier at the topmost level. Both Java and Titanium
arrays may be treated like Tin arrays, except that a Titanium array introduces only two qualifiers regardless
of its dimensionality.

Interfaces require a simple generalization of the method analysis. We still connect each method to the
superclass method that it overrides. However, we also add identical constraints tying each method to any

2Instead of requiring equality between overriding method types, we could allow subsumption as defined earlier. However,
neither Java nor Titanium grants this flexibility, so we choose to forbid it in Tin as well.
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Foo foo = new Foo(); // ` foo : Foo local
Foo [] mine = { foo }; // ` mine : Foo local [] local
Foo [] yours = { broadcast foo from 0 }; // ` yours : Foo global [] local
Object obscure = . . . ? mine : yours; // ` obscure : Object local
Foo [] recover = (Foo []) obscure; // ` recover : Foo ????? [] local

Figure 8: Problematic use of casts. Näıve inference produces different qualified types for “mine” and
“yours”, causing the cast to fail where it would previously have succeeded. One possible conservative treatment
would infer qualified type “Foo global [] local” for all three arrays, and thereby avoid breaking the cast.
Remember that Titanium qualified types are most legibly read right-to-left, with “[]” pronounced as “array
of”.

interface methods that it implements. This guarantees that each interface method has a consistent calling
signature across all implementations.

Most Titanium expressions can be handled without undue difficulty. String literals, for example, are
treated as allocations that always return a local string. The conditional expression operator (?:) yields a
result that weakly subsumes each of its two alternatives. Structured control flow constructs such as while and
if require no special handling beyond recursive descent into their subcomponents. Most arithmetic operators
manipulate and produce primitive types, and thus also require nothing more than recursive descent.

3.4.2 Difficult case: casting

Explicit cast expressions, however, do create a bit of a puzzle, because their purpose is to override the static
type system. Casting is badly overloaded: a cast may be used to statically raise or dynamically lower the class
of an object; it may be used to statically widen or dynamically narrow the local qualification of a reference;
it may be used to guide overloaded method selection or to explicitly document an implicit conversion; it may
be used for multiple such purposes simultaneously within a single operation.

Some casts affect only static information, while others are dynamic and can throw exceptions at runtime.
Local qualification inference must avoid introducing new runtime exceptions where none existed before,
because this would change the observable behavior of the program. Because casts are so overloaded, though,
it may be difficult to divine the underlying intent of any single cast. It is correspondingly difficult to avoid
changing or corrupting this intent as the analysis changes type qualifiers.

The Titanium code in Figure 8 illustrates a pathological but not uncommon case. In the original code,
variables “mine” and “yours” have identical qualified types, and this matches the qualified type of the
cast. Thus, the cast always succeeds. After local qualification inference, variables “mine” and “yours” have
different qualified types. Thus, the cast fails in one case or the other, no matter what qualified type we infer
for the cast expression.

The heart of the problem is the loss of qualifiers when promoting an array to an Object, which leaves
us with too little information to properly handle the subsequent recovery of qualifiers in the cast. One
possibility would be to use a conservative approach similar to that for native methods. When an array is
promoted to Object, all “lost” qualifiers that are not explicitly local are constrained to be global. When an
Object is cast back to an array, all “recovered” qualifiers are similarly constrained to be global unless already
explicitly local. This avoids introducing spurious cast failures at the expense of using local qualification less
aggressively than might otherwise be possible. This issue may warrant further investigation in the future.

4 Analysis Implementation

We have partially implemented local qualification inference for the Titanium language. The conservative
treatment of arrays proposed in section 3.4.2 has not yet been enacted, but all other language features are
fully supported. Also, the analysis currently reports its conclusions textually rather than using them to
produce runnable, optimized code. This section describes the implementation approach and presents initial
results from running the analysis on Titanium programs.
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(defnode IfStmtNode (StatementNode) (condition thenPart elsePart)
“A statement of the form

if (CONDITION) THENPART else ELSEPART
ELSEPART may be StmtNode::omitted if absent.”
(emitStatement typecheck single operatorName introduceTemporary makeCfg))

Figure 9: Sample AST node type definition. IfStmtNode is defined as a subclass of the abstract
StatementNode, which is itself defined earlier in the same file. The node is to have exactly three child nodes,
referred to using accessors named condition, thenPart, and elsePart, also defined earlier. The remainder of
the node definition consists of a prose description and a list of supported operations, neither of which is used
in this analysis.

4.1 Design Challenges

The Titanium compiler [25] consists of roughly 38,000 lines of C++ code. The compiler incorporates parsing,
type checking and name resolution, several forms of loop optimization, and code generation for a variety of
parallel back ends using C as an intermediate language. In the course of type checking and name resolution,
the Titanium compiler front end accumulates information about the static properties of a Titanium program.
This information is extensive and nontrivial; it is also ever-changing, as the Titanium language itself is still
evolving. For these reasons, we wish to reuse as much existing compiler infrastructure as possible when
implementing local qualification inference.

The Bane project has been developing a generic, reusable toolkit for constraint-based program analy-
sis [2]. By cleanly separating constraint generation from constraint solving, Bane facilitates rapid proto-
typing of novel analyses. The core constraint solver engine has been meticulously designed for speed and
scalability; building an analysis upon Bane lets researchers benefit from this investment without having to
code their own solver for each new analysis.

The first stage in developing a Bane analysis is generally to produce a front end for the language one
wishes to study. The analysis then proceeds as a constraint-generating traversal across data structures
produced by the front end. As stated above, we wish to reuse existing Titanium compiler technology for this
purpose. Unfortunately, integrating these two large software systems is nontrivial: the Titanium compiler
is written in C++, whereas Bane is written in Standard ML [16], using the Standard ML of New Jersey
compiler and runtime system [5].

Although a C callout interface is being developed for SML/NJ [14], this interface was still rather primitive
at the time this research was begun, and was not judged to be suitable for our purposes. Most notably,
the interface does not support cyclic data structures, of which the Titanium compiler has many. Instead,
the decision was made to more loosely couple the two systems. The Titanium compiler would be modified
to serialize the annotated abstract syntax trees (AST’s) that form its internal program representation.
A distinct SML process would parse this representation, reconstituting an equivalent AST in the SML
universe. Local qualification inference would then be performed upon this transported AST. The results of
the analysis would be serialized and communicated back to the Titanium compiler. The Titanium compiler
would incorporate the results of the analysis into its own AST, from which runnable code would be generated.

4.2 Abstract Syntax Tree Serialization

The primary representation of a program within the Titanium compiler is an annotated abstract syntax tree.
Nodes of the tree correspond to semantic language features, and are expressed as C++ classes. For example,
“IfStmtNode” is the name of a C++ class corresponding to conditional statement nodes in the tree. Each
node type has a well-defined set of child nodes, attributes, and operations. An IfStmtNode has three child
nodes, corresponding to the condition expression and the two alternative substatement blocks.

The set of AST node types, including their children, attributes, and operations, is defined externally
to the core compiler. These definitions use a specialized Lisp-like syntax, an example of which is given in
Figure 9. Several filters then use these definitions to generate C++ code which is incorporated into the
compiler. This includes such items as class declarations, simple helper and utility functions, and generic
traversal routines. The use of a high-level, declarative representation for AST node types greatly simplifies
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the task of transporting AST’s from C++ to SML. We have composed a new collection of filters that operate
on node definitions to produce:

1. C++ code to serialize an AST.

2. ML-Lex code to tokenize a serialized AST stream.

3. ML-Yacc code to parse a serialized AST stream.

4. SML datatype declarations corresponding to AST node types.

5. SML functions for accessing various properties of nodes, such as the type of an expression node or a
list of any node’s children.

The generated C++ serialization code is incorporated into the Titanium compiler. The ML-Lex and
ML-Yacc deserialization code is translated to SML [7, 22], and together with the other generated SML code,
forms the SML Titanium front end. Given a serialized AST from the Titanium compiler, the SML Titanium
front end reconstitutes an equivalent representation within the SML universe, ready for traversal and Bane

constraint generation. Because so much of the front end is generated automatically, the system should
be robustly maintainable in the face of future changes to in the Titanium language or Titanium compiler
infrastructure.

The serialized representation of an annotated AST uses ASCII text with nesting expressed using a Lisp-
like syntax. Such a syntax is extremely easy to parse; furthermore, it is amenable to human examination
during testing and debugging. An example of a serialized subtree appears in Figure 10. The code in question
is excerpted from the java.io.PrintStream.write(int) method. It encodes the logic that conditionally flushes
a buffered output stream upon writing a newline.

Examine the first line of the serialization, which is marked with a double dagger (‡). This line represents
the root of the entire subtree. The root is an IfStmtNode, described earlier. The hexadecimal number on
that first line is a unique node identifier. Such identifiers are useful when communicating information back
to the compiler, or for expressing cyclic structures. The first line also identifies the file name and line number
containing the source code to which the node corresponds. This is used for debugging purposes only.

Three subsequent lines are marked with asterisks (*). These correspond to the three child nodes that
we have stipulated each IfStmtNode must contain. The first child is a logical “and” expression. The second
child is an expression statement consisting of a method call. The third child is the optional “else” clause,
which has been omitted in this code and therefore is marked with “@”, the serialized analogue of a null
pointer.

Three examples of annotations are highlighted with daggers (†). The first and third identify “autoflush”
and “out” as fields of the PrintStream class. The second identifies “b” as a formal parameter to the current
method. Any other references to the same named entities carry identical declaration annotations, which
are used to tie constraints together. Thus, if the field “PrintStream.out” is constrained to be global in any
context, these annotations ensure that it is global in all other contexts as well.

4.3 Constraint Generation

Once the SML Titanium front end has reconstructed an annotated AST in the SML universe, local qualifica-
tion inference may begin. Constraint generation uses two passes over the AST. In the first pass, a structured
collection of constraint variables is formed for each declared variable, field, or formal method parameter. A
simple reference type requires a single constraint variable; an array requires additional variables depending
upon its dimensionality. The collection of constraint variables for each declared entity is associated with
that entity’s declaration annotation. As described earlier, this allows us to correlate multiple uses of a single
entity in different contexts.

The second pass traverses the entire tree bottom-up, inductively accumulating constraints per the in-
ference rules presented earlier. Bane supports several distinct logical constraint calculi, which may be
intermixed according to well-structured rules. Local qualification inference uses only the simplest of Bane’s
constraint languages: that of term unification. With “local” and “global” as concrete terms, term equal-
ity constraints correspond directly to the qualifier equality relation defined in 3.2.1. Terms may also be

15



if (autoflush && (b == ‘\n’))
out.flush();

(a) Titanium source code

‡ (IfStmtNode 0x84f2648 “java/io/PrintStream.java” 75
* (CandNode 0x84f2478 “java/io/PrintStream.java” 75

(ObjectFieldAccessNode 0x89b1be0 “java/io/PrintStream.java” 75
(ThisNode 0x89b1bb0 @

(TypeNameNode 0x84f58b8 @
(NameNode 0x84f5890 @

@
“PrintStream”
<ClassDecl 0x84f5830 0x84ff2c8>))

0)
(NameNode 0x84f2378 “java/io/PrintStream.java” 75

@
“autoflush”

† <FieldDecl 0x87e6108 0x84f5dd8>))
(EQNode 0x84f2448 “java/io/PrintStream.java” 75

(ObjectNode 0x89a6600 “java/io/PrintStream.java” 75
(NameNode 0x84f23c8 “java/io/PrintStream.java” 75

@
“b”

† <FormalParameterDecl 0x89a6528 0x84f21d0>))
(LitNode 0x84f2418 “java/io/PrintStream.java” 75

jchar(10))))
* (ExpressionStmtNode 0x84f25b8 “java/io/PrintStream.java” 76

(MethodCallNode 0x84f2568 “java/io/PrintStream.java” 76
(ObjectFieldAccessNode 0x89a6658 “java/io/PrintStream.java” 76

(ObjectFieldAccessNode 0x89b1c40 “java/io/PrintStream.java” 76
(ThisNode 0x89b1c10 @

(TypeNameNode 0x84f58b8 @
(NameNode 0x84f5890 @

@
“PrintStream”
<ClassDecl 0x84f5830 0x84ff2c8>))

0)
(NameNode 0x84f24a8 “java/io/PrintStream.java” 76

@
“out”

† <FieldDecl 0x87e99a0 0x8503998>))
(NameNode 0x84f2518 “java/io/PrintStream.java” 76

@
“flush”
<MethodDecl 0x87ec228 0x850afd8 0x0 { }>))

[
]))

* @)

(b) Serialized annotated AST

Figure 10: Sample serialized subtree. The Titanium code in (a) corresponds to the serialized annotated
AST in (b). Special marks (*†‡) highlight certain lines that are referenced in the text; these marks are not
part of the serialization proper.
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library relativelibrary
+ AMR increase

source lines 16,491 18,669 13%
AST nodes 99,195 114,682 16%
AST load time 3:53 4:34 18%
constraints 11,655 15,514 33%
references 8,474 11,461 35%
inferred local 6,681 8,896 33%
local proportion 79% 78%
analysis time 0:11 0:14 22%

Table 2: Comparative results

constrained to be conditionally equivalent in the manner of [21]. This corresponds to qualifier subsump-
tion. Relations on qualified types and on method types are decomposed into the corresponding relations
on qualifiers as suggested in 3.2.4. The aggregate global constraint system may be solved in nearly linear
time [20].

4.4 Findings

Eventually, the results of the analysis will be fed back into the Titanium compiler. The unique node identifiers
present in the AST serialization will be used to correlate solutions back to AST nodes and types, whose
locality qualifiers will be updated to reflect the changes suggested by the analysis. Code generation may then
proceed normally. At the moment, this feedback stage has not yet been implemented. Instead, conclusions
of the analysis are presented textually for human inspection. Summary statistics are also generated that
describe the overall performance and effectiveness of the analysis.

Local qualification inference has been applied to the standard Titanium class library. This includes the
standard Java packages java.io, java.lang, and java.util, as well as the ti.lang package which provides certain
additional Titanium-specific classes. This represents some sixteen thousand lines of source code without a
single explicit local qualification. The annotated abstract syntax tree contains 99,195 nodes.

The serialized form of this AST consumes nineteen megabytes, and takes nearly four minutes to deserialize
and reassemble in the SML universe. This clearly indicates that the serialization strategy is not viable in
the long term. The AST serialization format shown in Figure 10(b) is excessively verbose, and contains
considerable redundant information, particularly regarding source files and line numbers. This was helpful
during development, but is now a performance liability. Anecdotally, ML-Lex is also known to contain certain
inefficiencies that the SML Titanim front end may be stumbling upon. A condensed binary serialization that
avoids gratuitous redundancy may help solve both of these problems.

Once the AST has been deserialized and reconstituted, the analysis itself performs quite reasonably. The
first pass takes three seconds to preassign constraint variables to declared entities. The second pass requires
an additional eight seconds to concurrently generate and solve the constraints. The final constraint system
expresses 11,655 relations among locality qualifiers.

The analysis locates 8,474 distinct declared references, each of which is a potential opportunity for
local qualification. Of these, 1,793 are ultimately constrained to be global, while the remaining 6,681 are
unconstrained and therefore may be optimized to local. Since the standard Java classes perform no Titanium-
style global communications, one might be surprised that so many references (21%) were inferred as global.
This is primarily due to the many native methods in these classes, as predicted in section 3.4. If a native
method is implicitly declared to return a global reference, we cannot infer a local qualification because to do
so would break the external implementation of that method. This “globalness” then infects any code that
calls a native method, and so on.

The analysis has also been applied to a large scientific program. “AMR” is a full three-dimensional
adaptive mesh refinement Poisson solver [25]. AMR has been developed primarily on shared memory ma-
chines, and therefore has no explicit local qualifications. Results on AMR are comparable with those on the
standard class library, and are summarized in Table 2.
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AMR contains sparse internal documentation relative to Sun’s Java source. In this sense, AMR code
is more dense, which may explain why the AST node count grew more than the source line count. The
number of references and constraints grew even more dramatically. This may be due to AMR’s extensive
use of arrays, which entail an additional reference for each dimension. The relative proportion of references
that could be inferred as local decreases only slightly, from 79% to 78%. Although AMR performs numerous
global communications, it contains no black-box native methods. Those communications that are present
are generally well isolated in the interests of performance.

5 Closing

5.1 Related Work

Classical optimization for distributed parallel programming has focused on extremely regular problems;
primarily arrays and computations upon them. Only more recently have researchers turned their attention to
the issues created by irregular computations and pointer-intensive data structures. Efforts such as Linda [19],
Emerald [10], and Olden [18] have concentrated on runtime cost-reduction mechanisms, such as dynamic
migration of data or computation. Prelude [23] uses static program annotations to specify architecture-
specific implementation details in otherwise portable parallel codes. This approach is closer in spirit to
Titanium’s type qualifiers, although the two languages use rather different mechanisms to model and achieve
distributed computing.

Orca [8], AC [9], and Split-C [11] share Titanium’s notion of local versus remote data, with Orca placing
greater emphasis on compiler-driven placement while AC and Split-C give the programmer more direct
control. The creators of AC observed that locality qualifications applied to multidimensional arrays and
multiply-indirect pointers could lead to declaration syntaxes that are both confusing and baroque. From a
language design standpoint, it is interesting to note that both AC and Split-C assume that references are
local unless explicitly qualified as global; Titanium uses the opposite approach.

5.2 Conclusions and Future Work

We have described and implemented a static analysis that infers local qualifications on Titanium reference
types. The analysis appears to be quite effective in adding qualifications to realistic application code.
However, the results of the analysis are not used by the Titanium compiler, so it is difficult to gauge how
much the analysis can be expected to boost actual performance. Completing the results feedback portion of
the analysis remains the single most significant area for future work.

The Bane analysis engine has both helped and hindered implementation of the analysis. For all of its
expressiveness and righteous design, SML remains quite difficult to integrate with larger, preexisting code
bases. Integration of SML with the existing Titanium compiler consumed the preponderance of development
time for the analysis, and the time required to load an AST dwarfs the time required to analyze it. Yet
the Bane engine itself proved quite effective. The analysis is fast, both asymptotically and in practice, and
should scale well. Bane’s strict distinction between constraint generation and constraint solution forces one
to define analyses in a clearer, more formal manner, discouraging ad hoc solutions that obscure more than
they illuminate.

The analysis as currently described is fairly simple, and one could reasonably argue that a heavyweight
tool like Bane is not justified. However, future work may render the analysis more sophisticated, making
a high-performance solver like Bane more attractive. One clear area for exploration would be polymorphic
analysis of methods. Such an analysis should be particularly effective for many of the standard Java utility
classes, like java.util.Vector and java.util.Hashtable, which may store global objects in one context, but local
objects in another. Again, it remains to be seen how significant an impact this would have on real programs.
The Bane research group is currently developing a more general theory of polymorphic type qualifiers, of
which Titanium’s “local” may be one driving example.

Lastly, we observe that certain Titanium and Java design decisions have a significant impact on the
tractability and effectiveness of the analysis. We have highlighted array casts as a source of difficulty, the
solution to which may require a more conservative analysis than one might wish. However, we should also
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point out that many other aspects of the Titanium language greatly simplify the analysis. For example,
the complete lack of references to references (or references to methods) means that we always have good
information about the target of an assignment (or destination of a method call). Similarly, Java’s safety
features allow us to avoid dealing with pointer/integer conversion. A similar analysis for C or C++ would
need to be much more conservative and much less complete, or else suffer the added complexity of performing
points-to and other analyses. Thus, as others have pointed out [6], we find that safety and analyzability go
hand in hand. While Java may seem a strange starting point for high-performance scientific computing, a
safe language is ultimately an optimizable one.
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