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Abstract

Single Program, Multiple Data Programming for Hierarchical Computations

by

Amir Ashraf Kamil

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Katherine Yelick, Chair

As performance gains in sequential programming have stagnated due to power constraints, parallel
computing has become the primary tool for increasing performance. Parallel computing has long
been used in scientific computing, and programmers of the future will likely face many of the
same challenges that occur in programming large-scale machines. One such challenge is that of
hierarchy: machines are built in a hierarchical fashion, with a wide range of communication costs
between different parts of a machine, and applications such as divide-and-conquer algorithms often
have hierarchical structure.

Large-scale parallel machines are programmed primarily with the single program, multiple
data (SPMD) model of parallelism. This model combines independent threads of execution with
global collective communication and synchronization operations. Previous work has demonstrated
the advantages of SPMD over other models: its simplicity enables productive programming and
avoids many classes of parallel errors, and at the same time it is easy to implement and amenable
to compiler analysis and optimization. Its local-view execution model allows programmers to take
advantage of data locality, resulting in good performance and scalability on large-scale machines.
However, it is a flat model that does not fit well with hierarchical machines or algorithms.

In this dissertation, we introduce the recursive single program, multiple data (RSPMD) ex-
ecution model. This model extends SPMD with hierarchical, structured teams, or groupings of
threads. We design RSPMD extensions for the Titanium language, including a hierarchical team
data structure and lexically-scoped constructs for operating over teams. We demonstrate that these
extensions prevent erroneous use of teams that would result in deadlock. In addition, we present
a runtime mechanism for ensuring proper use of both global collective operations and collectives
over teams, eliminating more potential sources of deadlock.

As analyzable as SPMD is, we demonstrate that RSPMD can also be analyzed precisely and
efficiently. We define a hierarchical pointer analysis for determining which data a pointer can
reference, as well as on which threads the referenced data may reside. We then present a series
of analyses for computing the set of concurrent statements in both SPMD and RSPMD programs.
We show that these analyses improve the results of multiple client analyses, including data-locality
and sharing inference, race detection, and memory-model enforcement.
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Finally, we present application case studies demonstrating the expressiveness and performance
of the RSPMD model. We show that the model enables divide-and-conquer algorithms such as
sorting to be elegantly expressed, and that team collective operations increase performance of a
conjugate gradient benchmark by up to a factor of two. The model also facilitates optimizations
for hierarchical machines, improving scalability of a particle in cell application by 8x, performance
of sorting by up to 40%, and execution time of a stencil code by as much as 14%.
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Chapter 1

Introduction

In the past few years, parallel computing has entered mainstream use following the introduction of
multicore processors. Previously, computing performance was increased primarily through clock
speed scaling, resulting in processors that could execute instructions faster. Unfortunately, this also
increased power consumption, leading to problems with heat dissipation at high clock speeds. As
raising clock speed could no longer be used to increase performance, vendors resorted to increasing
the number of processing cores on each chip, allowing more instructions to complete in a given
amount of time through parallel execution. Unlike clock speed scaling, which allows existing
software to run faster, increasing parallelism requires programs to be rewritten to take advantage
of concurrent execution.

Parallel computing has long been used in scientific computing, where large problem sizes could
not be solved on a single processor. As a result, many of the challenges faced in large-scale scien-
tific computing are likely to be encountered in the future by mainstream parallel computing. One
specific challenge is that of hierarchical machines. Large scale parallel machines are constructed
in a hierarchical fashion, with multiple cores in a processor die, multiple processor dies on a single
chip, multiple chips on the same mainboard, multiple boards in a server rack, and multiple server
racks in a complete machine. For example, Figure 1.1 diagrams the hierarchical layout of a single
compute node in a Cray XE6 machine. This hierarchical organization results in widely varying
communication costs between different parts of a machine. Programmers must take into account
these costs in order to obtain maximal performance.

Programming large-scale machines is done primarily through the single program, multiple data
(SPMD) model. A SPMD program is launched with a fixed number of threads, typically one per
core, that execute throughout the program. The SPMD model dominates programming at scale
because it encourages “parallel thinking” throughout the program execution, exposing the actual
degree of available parallelism. It’s local view of execution also naturally leads to good locality
and can be implemented by simple, low-overhead runtime systems. The model of communication
between threads is orthogonal to choice of control, and both message passing models like the Mes-
sage Passing Interface (MPI) library [73] and a number of partitioned global address space (PGAS)
languages like Unified Parallel C (UPC) [19], Titanium [110], and Co-Array Fortran [77] use the
SPMD model by default. Previous work has demonstrated the productivity and performance bene-
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Figure 1.1: Hierarchical arrangement of a single Cray XE6 compute node.

fits of languages that combine SPMD and PGAS in general [109] and Titanium in particular [108].
One of the key features of the SPMD model is the ability to define collective operations, which

are operations that are performed by all threads together. Collectives allow program synchroniza-
tion and communication to be specified in a simple and elegant manner, making parallel bugs such
as race conditions and deadlock less likely. They also allow global-view operations to be specified
in a local-view context. Since all threads must participate in each collective, care must be taken to
ensure that such operations are aligned on all threads to avoid dependencies between collectives.
In the case of the Titanium language, alignment guarantees are provided at compile time but may
alternatively be enforced at runtime [53]. Finally, collective operations impose a degree of struc-
ture on SPMD programs. The combination of this structure and the fact that all threads execute the
same code makes SPMD code amenable to program analyses, enabling many optimizations and
correctness tools [60, 65, 66, 52, 51, 54].

While SPMD has proven to be a valuable programming model, its restrictiveness does have
drawbacks when it comes to implementing hierarchical algorithms on hierarchical machines. Al-
gorithms that divide tasks among threads or that recursively subdivide do not fit well into a model
with a fixed number of threads executing the same code. SPMD programming languages also tend
to have a relatively flat machine model, with no distinction between threads that are located nearby
on a large-scale machine and threads that are further apart. This lack of awareness of the underlying
machine hierarchy results in communication costs that are not transparent to the programmer.

In this dissertation, we address the above shortcomings by introducing the recursive single
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program, multiple data (RSPMD) model, an extension of the SPMD model with user-defined hier-
archical teams, subsets of threads that cooperatively execute pieces of code. We demonstrate that
this model enables productive programming, provides good performance, eliminates entire classes
of parallel bugs, and allows precise compiler analysis.

In order to realize the RSPMD model in the context of the Titanium programming language,
we introduce a data structure to represent teams, library functions to facilitate team creation, and
language constructs that operate on teams. We demonstrate how to ensure textual alignment of
collectives, eliminating many forms of deadlock involving teams. We describe multiple program
analyses on RSPMD programs including pointer and concurrency analysis.

We evaluate the RSPMD model through case studies on multiple applications. We demonstrate
that hierarchical teams are useful for expressing computations that naturally subdivide, without
having to create and destroy logical threads, retaining the advantages of parallel thinking. We also
show that hierarchical teams can be used to optimize for the varying communication characteristics
of modern, hierarchical parallel machines, achieving significant performance improvements over
the flat SPMD model. Finally, we show that dynamic checking ensures alignment of collectives
with little performance overhead, and we demonstrate that our program analyses produce useful
results for locality and data sharing inference, race detection, and sequential consistency.

1.1 Thesis Contributions
The main contributions of this dissertation are as follows:

• We extend the SPMD model of parallelism to support hierarchical computation, resulting
in the RSPMD model. We introduce a powerful library for expressing team hierarchies and
language constructs for operating over teams. We show that the design of this team mech-
anism prevents deadlock that may occur in non-hierarchical schemes for grouping threads,
and we implement it in the Titanium language.

• We demonstrate how to enforce textual alignment of collectives using runtime checks, elim-
inating a major class of bugs in parallel programming. We show how to guarantee alignment
in programs written with both the flat SPMD model and the hierarchical RSPMD model.
We provide experimental evidence that there is low runtime overhead in checking collective
alignment.

• We develop a pointer analysis for programs that use the RSPMD execution model and the
hierarchical partitioned global address space (HPGAS) memory model. We show that this
analysis improves data locality and sharing inference over constraint-based analyses.

• We develop an efficient analysis for determining the set of potentially concurrent statements
in SPMD and RSPMD programs.

• We write a race detector using our pointer and concurrency analyses, proving that they im-
prove precision and significantly reduce false positives.
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• We implement a version of the Titanium compiler that provides a sequentially-consistent
memory model, using the pointer and concurrency analyses to minimize the runtime cost of
doing so. We demonstrate that applications compiled in such a model can achieve perfor-
mance that is close to that of a relaxed memory model.

• We implement a set of benchmarks using the RSPMD model and its Titanium implementa-
tion. We show that the model enables divide-and-conquer algorithms such as sorting to be
expressed elegantly. We demonstrate that team collectives provide better performance and
productivity than hand-written communication in a conjugate gradient application. We use
RSPMD constructs to perform optimizations for hierarchical machines on sorting, particle
in cell, and stencil benchmarks. We show that these optimizations improve scalability of
particle in cell and performance of sorting and stencil on multiple contemporary platforms.
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Chapter 2

Background

In this chapter, we describe the basic language features that we build upon in this dissertation.
We start by reviewing the single program, multiple data (SPMD) model of parallelism, one of the
most common models used on large-scale machines and the basis for the recursive single program,
multiple data (RSPMD) model that we introduce. We then provide a brief overview of the Titanium
language that is the vehicle for our work, as well as the partitioned global address space (PGAS)
memory model that it uses. Finally, we discuss alignment of collective operations, an important
aspect of correctness of large-scale parallel codes.

2.1 The Single Program, Multiple Data Model
The single program, multiple data (SPMD) model of parallelism consists of a set of parallel threads
that run the same program. Unlike in dynamic task parallelism, the set of threads is fixed through-
out the entire program execution. The threads can be executing at different points of the program,
though collective operations such as barriers can synchronize the processes at a particular point in
the program.

As an example of SPMD code, consider the following written in the Titanium language:

public static void main (String [ ] args ) {
System .out .println ("Hello from thread " + Ti .thisProc ( ) ) ;
Ti .barrier ( ) ;
if (Ti .thisProc ( ) == 0)
System .out .println ("Done." ) ;

}

A fixed number of threads, specified by the user on program start, all enter main(). They first
print out a message with their thread IDs, or ranks, which are unique integers in the range 0 to
the number of threads minus one. These messages can appear to the user in any order, since the
print statement is not synchronized. Then the threads execute a barrier, which prevents them
from proceeding until all threads have reached it. Finally, thread 0 prints out another message
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Figure 2.1: Execution of a SPMD program.

that appears to the user after all previous messages due to the barrier synchronization. Figure 2.1
illustrates the execution of this code on eight threads.

Like task-parallel but unlike data-parallel programs, SPMD programs have a local view of
execution, meaning that each thread is explicitly assigned work. Data parallelism, on the other
hand, provides a global view, in which there is a single logical thread of control, and the compiler
is responsible for distributing work across computational units. In SPMD, collective operations
such as a one-to-all broadcast or an all-to-all exchange provide simple global-view operations in
the context of a local-view model and can be used to build larger, more complicated global-view
operations.

The set of SPMD languages includes Unified Parallel C (UPC) [19], Co-Array Fortran [77],
and Titanium [110]. In addition, though the MPI library [73] supports arbitrary task-parallel code,
most MPI programs are written in a SPMD1 manner, since the added structure of this programming
style simplifies the job of the programmer.

SPMD languages occupy a middle ground between task and data parallelism; they are more
structured and therefore easier to program and more analyzable than task-parallel languages, but
are more flexible than data-parallel languages, allowing expression of irregular applications that is
difficult in the data parallel model. Programmer control over work decomposition also generally
leads to better performance than the automated decomposition in data parallelism. The following
summarizes the advantages of SPMD in more detail:

• Locality. Data locality is essential to achieving good performance on large-scale machines,
where communication across the network is very expensive compared to computation and
local-memory access. Since SPMD has a local view of execution, it allows programmers
to write code that concentrates computation on local data and minimizes communication
between threads.

1SPMD is usually pronounced as “spimdee”, so we precede it with the indefinite article “a”.
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• Structured parallelism. The set of threads is fixed throughout computation, exposing the
exact degree of parallelism to the programmer. The fact that all threads execute the same
program makes it easier to reason about parallel behavior. Global synchronization operations
allow programs to be divided into communication and computation phases, reducing the
possibility of race conditions, deadlock, and other parallel bugs that are common in the task
parallel model. These same features also make it easier for compilers to reason about SPMD
code, resulting in more efficient and precise program analyses than in other models.

• Simple runtime implementation. Since SPMD has a local view of execution and par-
allelism is exposed directly to the user, compilers and runtime systems require much less
effort to implement than with data parallelism. The latter can require complicated compiler
analysis and runtime mechanisms for data distribution and load balancing. In SPMD, these
tasks are handled by the programmer.

• Global operations. Basic collective operations facilitate global synchronization and com-
munication. More complicated global view operations can also be built using the basic
collectives, allowing the tasks of data distribution and load balancing to be offloaded to a
library, replicating the productivity benefits of data-parallel languages. For example, a dis-
tributed matrix library can provide global interfaces for constructing distributed matrices as
well as operating over them. These interfaces would appear to the programmer like any other
global operations and would be just as easy to use.

As a result of these advantages, large-scale machines are predominantly programmed using a
pure SPMD model, combinations of multiple SMPD components, or combinations of SPMD and
shared-memory components.

On the other hand, SPMD in its current form does suffer from some drawbacks. The flat model
of parallelism, with only global collective operations, makes it difficult to write hierarchical code.
This includes codes with application-level hierarchy, such as divide-and-conquer algorithms, as
well as programs optimized for hierarchical machines. For the latter, common practice is to write
SPMD code for the distributed portion of a machine and then to use a shared-memory parallel
library such as OpenMP [80] for the shared-memory part of a machine. Such a strategy does not
take full advantage of a machine, since only a single thread in each shared-memory domain is used
for communication. In §8.1, we show that better performance can be obtained in many cases by
using multiple threads for communication.

As an example of application-level hierarchy, consider a merge sort written in a task parallel
manner.

1 int [ ] mergeSort (int [ ] data ) {
2 int len = data .length ;
3 if (len < threshold ) {
4 return sequentialSort (data ) ;
5 }
6 d1 = fork mergeSort (data [ 0 :len /2−1]) ;
7 d2 = mergeSort (data [len / 2 : len−1]) ;
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8 join d1 ;
9 return merge (d1 , d2 ) ;

10 }

The code starts with a single thread and then forks off another thread in each divide step, until the
data size reaches a threshold where the overhead of using more threads is greater than the gain
from any extra parallelism. The join operation in line 8 waits for the sort to be completed on the
forked thread before performing each merge step.

Since SPMD does not allow dynamic creation of new threads, the merge sort algorithm needs
to be rewritten to make use of the existing set of threads. This can be done as follows.

1 int [ ] mergeSort (int [ ] data , int [ ] threadIds ) {
2 int len = data .length ;
3 int numThreads = threadIds .length ;
4 if (numThreads == 1) {
5 return sequentialSort (data ) ;
6 }
7 if (threadIds [ 0 :numThreads / 2 −1] .contains (myId ) ) {
8 d1 = mergeSort (data [ 0 :len /2−1] , threadIds [ 0 :numThreads /2−1]) ;
9 } else {

10 d2 = mergeSort (data [len / 2 : len−1] ,
11 threadIds [numThreads / 2 : numThreads−1]) ;
12 }
13 barrier (threadIds ) ;
14 if (myId == threadIds [ 0 ] ) {
15 return merge (d1 , d2 ) ;
16 }
17 }

Here, the code starts with all threads, repeatedly dividing the data and set of threads in half until
only one thread remains. Each thread sequentially sorts its data, after which threads recombine to
perform the merge step, until all threads reach the top level. The barrier in line 13 performs the
same function as the join in the task parallel algorithm, waiting for all relevant threads to finish
sorting before the merge operation can occur. Unlike in flat SPMD, however, it should act only
on a subset of threads, not all the threads in the program. We refer to such subsets of threads as
teams. Teams are represented by arrays of thread IDs above; in §3.2, we define a more complex
data structure for teams.

Another common example of application-level hierarchy is to divide the initial set of threads
among multiple distinct tasks. For example, a climate modeling code may use separate threads to
model the ocean, land, and the atmosphere. Each such task may be written independently, requiring
them to be composed in a single application. This composition is difficult in flat SPMD, and thread
teams can be used to facilitate the process.

Despite the fact that teams are represented by flat vectors in the merge sort algorithm above,
there is a hierarchical relationship between teams: starting from the global team, each team is re-
cursively subdivided into two smaller teams. We thus define the recursive single program, multiple
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Figure 2.2: Execution of an RSPMD program.

data (RSPMD) model of parallelism as an extension of SPMD that provides hierarchical teams.
Figure 2.2 illustrates the execution of an RSPMD program.

In this thesis, we extend the Titanium language to support the RSPMD execution model. Other
languages such as UPC are moving towards an execution model based on teams [5], and the GAS-
Net [17] runtime layer used in Titanium now has experimental support for teams and team col-
lectives. Unlike the teams in our work, teams in both UPC and GASNet are non-hierarchical
groupings of threads. As we demonstrate throughout this thesis, hierarchical teams provide safety
and analyzability advantages over flat teams.

2.2 Titanium
The work in this thesis is done in the context of the Titanium language [110]. Titanium is an explic-
itly parallel dialect of Java that uses the SPMD model of parallelism and the PGAS memory model
described in §2.3. In addition, it provides language features for parallel and scientific program-
ming. These include multidimensional arrays and index spaces, immutable classes, region-based
memory allocation [2, 40], C++-style templates, operator overloading, and barrier synchronization.
In this report, we discuss only those features that are relevant to our analyses.

The Titanium compiler does not use the Java Virtual Machine model. Instead, the end target
is assembly code. For portability, Titanium is first translated into C and then compiled into an
executable. In addition to generating C code to run on each processor, the compiler generates
calls to a runtime layer based on GASNet [17], a lightweight communication layer that exploits
hardware support for direct remote reads and writes when possible. Titanium runs on a wide range
of platforms including uniprocessors, shared-memory machines, distributed-memory clusters of
uniprocessors or SMPs, and a number of historical supercomputer architectures.
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Figure 2.3: The Titanium thread hierarchy. The thin, blue arrows signify node-local and thread-
local pointers, while the thick, red arrows designate global pointers. Global pointers may point to
local data. Levels are numbered by increasing degree of locality.

2.3 The Partitioned Global Address Space Model
The SPMD execution model specifies the mechanism of control in a parallel program; the mecha-
nism of communication is orthogonal to that of control. One important communication mechanism
is the partitioned global address space (PGAS) model, which allows any thread to directly access
memory on other threads. At runtime, two threads may share the same physical address space,
in which case such an access is done directly using load and store instructions, or they may be
in distinct address spaces, in which case the global access must be translated into communication
using a library such as GASNet.

As an example, consider the following Titanium code:

int [ ] local mydata = { . . . } ;
int [ ] data0 = broadcast mydata from 0 ;
for (int i = 0 ; i < data0 .length ; i++)

. . . data0 [i ] . . .

In this code, each thread creates an integer array in its own memory space. Thread 0 then broadcasts
a pointer to its array to the other threads, which can then access elements of thread 0’s array, albeit
with a possible performance penalty.

As can be seen in the example above, PGAS languages expose some degree of memory hi-
erarchy to the programmer by virtue of the partitioned address space. In Titanium, pointers can
be thread local, corresponding to level 2 in Figure 2.3, node local, corresponding to level 1, or
global, corresponding to level 0. Thread-local pointers can only address data on the same thread2,
node-local pointers can only reference data in the same physical address space, and global pointers
can point to any object in the program. By default, pointers in Titanium are global, and the local
qualifier specifies that a pointer is node local. There is no specific qualifier for thread-local point-

2Thread-local pointers in Titanium are actually only used by program analysis and are not exposed in the type
system.
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ers, though pointers qualified by the nonshared keyword are guaranteed to be thread local. Other
PGAS languages such as UPC only have two levels of hierarchy.

The hierarchical partitioned global address space model (HPGAS) is an extension of PGAS
to an arbitrary machine structure with an arbitrary number of levels. It can be used to represent
the memory hierarchy on a single thread, as well as hierarchical network communication costs.
Previously, we used the HPGAS model to construct a pointer analysis for Titanium [54]. In §6, we
extend the pointer analysis to work on hierarchical teams.

Instead of a partitioned global address space, a unified global address space can be provided
to the programmer. Such a memory model, however, does not expose any locality to the user. A
global pointer in the PGAS model provides a hint to the programmer that communication may be
required; a unified model would not provide such a hint, making performance more opaque to the
user. This in turn could make it more difficult to write code that performs well.

Another alternative to PGAS is message passing, in which communication is done by exchang-
ing messages between threads, as is used in the Message Passing Interface (MPI) [73]. Both sender
and receiver explicitly participate in communication, requiring significant programmer effort to
align the two participants and avoid deadlock. The PGAS model, on the other hand, requires the
explicit participation of only the initiator of communication, and thus is simpler to program than
message passing.

Previous work has shown that PGAS languages in general [109] and Titanium specifically
[108] provide an excellent combination of application performance and programmer productivity,
justifying our decision to pursue hierarchical extensions to parallel programming in the context of
the Titanium language.

2.4 Collective Alignment
One of the key features of the Titanium language is that it guarantees proper usage of collective
operations through textual alignment. Collectives are textually aligned if all threads execute the
same textual sequence of collective operations, and they agree on all control-flow decisions that
affect execution of collectives. For example, the code below violates textual alignment, since
different threads take different branches; not only do they not agree on control flow affecting
collectives, they reach different textual instances of a collective.

if (Ti .thisProc ( ) % 2 == 0) / / even t h r e a d s
Ti .barrier ( ) ;

else / / odd t h r e a d s
Ti .barrier ( ) ;

Discussions with parallel application experts indicate that most applications do not contain un-
aligned collectives, and most of those that do can be modified to do without them. Our own survey
of eight NAS Parallel Benchmarks [9] using MPI demonstrated that all of their collectives are
textually aligned.

Misalignment of collectives can result in deadlock, such as in the following code:
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1 if (Ti .thisProc ( ) % 2 == 0) / / even t h r e a d s
2 Ti .barrier ( ) ;
3 else / / odd t h r e a d s
4 y = broadcast x from 0 ;

In this code, threads with even ID wait at the barrier in line 2, while threads with odd ID wait at
the broadcast in line 4. Neither operation can complete until all threads have reached it, resulting
in deadlock. While this example may be contrived, more complicated cases can occur in practice
with much more subtle errors.

Titanium’s type system statically ensures that global collective operations are textually aligned
by making use of single-valued expressions that are semantically the same on all threads [1].
We describe this type system in detail in §4. Unfortunately, the type system requires significant
programmer burden and is difficult to extend to collectives over teams. Instead, we introduce in §4
a dynamic scheme that guarantees textual alignment at runtime.
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Chapter 3

Language Extensions

The recursive single program, multiple data (RSPMD) model of parallelism consists of a fixed
set of cooperating threads that can be recursively subdivided into smaller groups of threads. In
this chapter, we define language extensions for Titanium to implement the RSPMD model. We
start be discussing the primary design goals for the language extensions. We then present new
data structures and language constructs for RSPMD. Lastly, we provide an overview of how the
extensions are implemented in the Titanium compiler and runtime.

3.1 Design Goals
In designing the new additions to the Titanium language, we had a few goals in mind for the
extensions to satisfy: safety, flexibility, composability, support for collectives, performance, and
analyzability.

1. Safety. Team implementations in other SMPD languages and frameworks do not gener-
ally impose any restrictions on their use. This can lead to circular dependencies in team
operations, resulting in deadlock. For example, a set of threads may attempt to perform a
collective operation on one team, while other threads attempt to perform a collective opera-
tion on a different team; if the two teams overlap, then this situation results in deadlock. The
following code illustrates this problem:

1 Team t1 = new Team ( 0 : 7 ) ;
2 Team t2 = new Team ( 0 : 3 ) ;
3 if (myId == 0) {
4 barrier (t1 ) ;
5 } else {
6 barrier (t2 ) ;
7 }
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In this code, barrier(t) executes a barrier operation over team t. Since threads 0 through
3 are in both t1 and t2, thread 0 waits for threads 1 through 3 to arrive at the barrier in line
4, while they in turn wait for thread 1 to arrive at the barrier in line 6. Deadlock is the result.

While the problem is easy to spot in the code above, more complicated examples can be
constructed that contain less obvious circular dependencies. The Titanium team exten-
sions should prevent such dependencies, as well as ensure that team collectives are textually
aligned on all threads in the relevant team, as is done for existing global collectives.

2. Flexibility. A trivial solution to the safety problem would be to restrict each thread to be
a member of a single, fixed team throughout program execution, preventing circular depen-
dencies between teams. However, many applications make use of different thread groupings
at different points in the program, such as a matrix-vector multiplication that requires both
row and column teams. The team mechanism should be flexible enough to support such
cases while still providing safety guarantees.

3. Composability. Existing code running in the context of a particular team should behave as
if the entire world consisted of just the threads in that team, with thread ranks as specified by
the team. This is to facilitate composition of different tasks, so that a subset of threads can
be assigned to each of them. At the same time, the team mechanism should make it possible
to interact with threads outside of an assigned team if necessary.

4. Support for collectives. One of the key features of the SPMD programming model is the
ability of threads to communicate and synchronize through collective operations, such as
reductions and barriers. Without support for collective operations over teams, users would
have to hand-write their own implementations, requiring extensive development time and
resulting in suboptimal performance. We describe such an example in §8.1.2.

5. Performance. Team operations should not adversely affect application performance. This
requires that team usage operations, which may be invoked many times throughout an ap-
plication run, be as lightweight as possible, even at the expense of team creation operations
that are called much less frequently.

6. Analyzability. The structure of SPMD code makes it more amenable to analysis than other
models of parallelism, enabling optimizations and correctness tools that take advantage of
analysis results. RSPMD code should similarly be easy to analyze, and the team extensions
should avoid making it harder to reason about RSPMD programs.

3.2 Team Representation
In order to represent a team hierarchy, we introduce a new Team object, as shown in Figure 3.1. A
Team represents a group of threads and contains references to parent and child teams, resulting in a
hierarchy of teams. Like MPI or GASNet groups, Team objects specify team structures separately
from their usage; this is useful when a program uses multiple different team structures or repeatedly
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public class Team {
/∗ ∗ C r e a t e team wi th a l l t h r e a d s i n c u r r e n t l y e x e c u t i n g team . ∗ /
public Team ( ) ;
/∗ ∗ R e t u r n s t h e i t h c h i l d o f t h i s team . ∗ /
public Team child (int i ) ;
/∗ ∗ Number o f c h i l d teams . ∗ /
public int numChildren ( ) ;
/∗ ∗ Rank of t h i s team i n i t s p a r e n t . ∗ /
public int teamRank ( ) ;
/∗ ∗ Number o f t h r e a d s i n t h i s team . ∗ /
public int size ( ) ;
/∗ ∗ The c h i l d team c o n t a i n i n g t h e c a l l i n g t h r e a d . ∗ /
public Team myChildTeam ( ) ;
/∗ ∗ S p l i t team i n t o n e q u a l l y−s i z e d subteams , w i th t h r e a d s r e t a i n i n g
∗ r e l a t i v e r a n k s . ∗ /

public void splitTeam (int n ) ;
/∗ ∗ S p l i t team i n t o n c h i l d teams , w i th t h r e a d s a s s i g n e d t o sub teams
∗ i n b l o c k c y c l i c o r d e r . ∗ /

public void splitTeamBlockCyclic (int n , int sz ) ;
/∗ ∗ S p l i t team i n t o t h e g i v e n subteams , w i th r a n k s s p e c i f i e d
∗ r e l a t i v e t o t h i s team . ∗ /

public void splitTeamRelative (int [ ] [ ] teams ) ;
/∗ ∗ C o l l e c t i v e s p l i t o p e r a t i o n . A s s i g n s t h r e a d s t o sub teams
∗ a c c o r d i n g t o c o l o r and t h e g i v e n rank r e l a t i v e t o o t h e r t h r e a d s .
∗ /

public single void splitTeamAll (int color , int relrank ) ;
/∗ ∗ C o l l e c t i v e s p l i t o p e r a t i o n . D i v i d e s t h r e a d s i n t o sub teams of
∗ t h r e a d s t h a t s h a r e memory , w i th t h e g i v e n r e l a t i v e r ank . ∗ /

public single void splitTeamSharedMem (int rel ) ;
/∗ ∗ C o l l e c t i v e o p e r a t i o n . C o n s t r u c t s a new team i n which each
∗ subteam c o n s i s t s o f a s i n g l e t h r e a d from each subteam of t h i s
∗ team . ∗ /

public single Team single makeTransposeTeam ( ) ;
/∗ ∗ I n i t i a l i z e r u n t i m e s t r u c t u r e s r e q u i r e d by t h i s team and run
∗ c o n s i s t e n c y ch ec ks . ∗ /

public single void initialize (boolean check ) ;
}

Figure 3.1: Relevant functions from the Titanium Team class.
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Figure 3.2: An example of a team hierarchy.

uses the same structure, as in §8.1.2, and also allows team data structures to be manipulated as first-
class objects.

Knowledge of the physical layout of threads in a program allows a programmer to minimize
communication costs, so a new method Ti.defaultTeam() returns a special team that corresponds
to the mapping of threads to the machine hierarchy. Currently, it merely divides threads into groups
that share memory, though future use of the hwloc library [84] can provide a more representative
layout. The invocation Ti.currentTeam() returns the current team in which the calling thread is
participating.

Figure 3.2 shows the team hierarchy created by the following code, when there are a total of
twelve threads:

Team t = new Team ( ) ;
t .splitTeam ( 3 ) ;
int [ ] [ ] ids = new int [ ] [ ] {{0 , 2 , 1} , {3}} ;
for (int i = 0 ; i < t .numChildren ( ) ; i++)
t .child (i ) .splitTeamRelative (ids ) ;

Each box in the diagram corresponds to a node in the team tree, and the entries in each box refer
to member threads by their global ranks.

The code above first creates a team consisting of all the threads and then calls the splitTeam
function to divide it into three equally-sized subteams of four threads each. It then divides each
of those subteams into two uneven, smaller teams. The splitTeamRelative call divides a team
into subteams using IDs relative to the parent team. In this case, each child u of team t is split
into two smaller teams, with threads 0, 2, and 1 of u assigned to the first subteam and thread 3 of u
assigned to the second. This behavior allows the same code to be used to divide each of the three
children of t, which would not be the case if splitTeamRelative used global IDs.

The Team class provides a few other ways of generating subteams, as shown in Figure 3.1.
In addition, it includes numerous functions to query team properties, a sample of which are also
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shown in Figure 3.1. For example, the teamRank() function returns the rank of a team in its parent,
which can be used to write code that is conditional on a team’s rank.

Once a team has been created, the programmer must call the initialize method before using
the team in the constructs introduced below. It is a collective operation that performs the runtime
setup needed by a team and checks team consistency across threads. In our current implementation,
this initialization is separate from team creation, allowing a user to construct a team on a single
thread and then broadcast it to the others. Those threads then must create local copies since Team
objects contain thread-specific state. So far, we have not found this to be a useful feature, and we
may remove this functionality in order to combine team creation and initialization.

3.3 New Language Constructs
In designing new language constructs that make use of teams, we identified two common usage
patterns for grouping threads: sets of threads that perform different tasks and sets of threads that
perform the same operation on different pieces of data. We introduce a new construct for each of
these two patterns.

3.3.1 Task Decomposition
In task parallel programming, it is common for different components of an algorithm to be assigned
to different threads. For example, a climate simulation may assign a subset of all the threads to
model the atmosphere, another subset to model the oceans, and so on. Each of these components
can in turn be decomposed into separate parts, such as one piece that performs a Fourier transform
and another that executes a stencil. Such a decomposition does not directly depend on the structure
of the underlying machine, though threads can be assigned based on machine hierarchy.

Task decomposition can be expressed through the following partition statement that divides
the current team of threads into subteams:

partition(T) { B0 B1 ... Bn−1 }

A Team object (corresponding to the current team at the top level) is required as an argument.
The first child team executes block B0, the second block B1, and so on. It is an error if there are
fewer child teams than partition branches, or if the given team arguments on each thread in the
current team do not have the same description of child teams. If the provided team has more than
n subteams, the remaining subteams do not participate in the partition construct. Once the partition
is complete, threads rejoin the previous team.

As a concrete example, consider a climate application that uses the team structure in Figure 3.2
to separately model the ocean, the land, and the atmosphere. The following code would be used to
divide the program:

partition (t ) {
{ model_ocean ( ) ; }
{ model_land ( ) ; }
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Figure 3.3: Blocked matrix-vector multiplication.

{ model_atmosphere ( ) ; }
}

Threads 0 to 3 would then execute model_ocean(), threads 4 to 7 would run model_land(), and
threads 8 through 11 would model the atmosphere.

Since partition is a syntactic construct, task structure can be inferred directly from program
structure. This simplifies program analysis and improves understandability of the code.

3.3.2 Data Decomposition
In addition to a hierarchy of distinct tasks, a programmer may wish to divide threads into teams
according to algorithmic or locality considerations, but where each team executes the same code on
different sets of data. Such a data decomposition can be either machine dependent or required by
an algorithm, and both the height and width of the hierarchy may differ according to the machine
or algorithm.

Consider the matrix-vector multiplication depicted in Figure 3.3, where the matrix is divided
in both dimensions. In order to compute the output vector, threads 0 to 3 must cooperate in a
reduction to compute the first half of the vector, while threads 4 to 7 must cooperate to compute
the second half. Both sets of threads perform the same operation but on different pieces of data.

A new teamsplit statement with the following syntax allows such a data-driven decomposition
to be created:

teamsplit(T) B

The parameter T must be a Team object (corresponding to the current team at the top level), and
as with partition, all threads must agree on the set of subteams. The construct causes each thread
to execute block B with its current team set to the thread’s subteam specified in T , so that thread
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ranks and collective operations in B are with respect to that subteam. As mentioned above, each
subteam also has a rank, which can be used to determine the set of data that the subteam is to
operate on.

As an example, consider a reduction over the rows of a matrix, as in the following code:

teamsplit (t ) {
Reduce .add (data [t .myChildTeam ( ) .rank ( ) ] , myData ) ;

}

The reduction executes over the current team inside the teamsplit on each thread, which is its
associated child team of t. As a result, data from threads 0 to 3 are reduced to produce a result for
team 0, and data from threads 4 to 7 are combined into a result for team 1.

3.3.3 Common Features
Both the partition and teamsplit constructs are lexically scoped, changing the team in which a
thread is executing within that scope. This implies that at any point in time, a thread is executing
in the context of exactly one team (which may be a subteam of another team and have child teams
of its own). Given a particular team hierarchy, entering a teamsplit or partition statement moves
one level down in the hierarchy, and exiting a statement moves one level up. Statements can be
nested to make use of multi-level hierarchies, and recursion can be used to operate on hierarchies
that do not have a pre-determined depth. Consider the following code, for example:

public void descendAndWork (Team t ) {
if (t .numChildren ( ) != 0 )
teamsplit (t ) {

descendAndWork (t .myChildTeam ( ) ) ;
}

else
work ( ) ;

}

This code descends to the bottom of an arbitrary team hierarchy before performing work. A con-
crete example that uses this paradigm is the merge sort in §8.1.3.2.

In order to meet the composability goal of §3.1, the thread IDs returned by Ti.thisProc()
are now relative to the team in which a thread is executing, and the number of threads returned
by Ti.numProcs() is equal to the size of the current team. Thus, a thread ID is always between
0 and Ti.currentTeam().size()−1, inclusive. A new function Ti.globalNumProcs() returns
the number of threads in the entire program, and Ti.globalThisProc() returns a thread’s global
rank.

Collective communication and synchronization now operate over the current team. Both the
partition and the teamsplit construct are also considered collective operations, so they must be
textually aligned in the program. The combination of the requirement that all threads must agree
on the set of subteams when entering a partition or teamsplit construct, lexical scoping of the
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constructs, and textual collective alignment ensure that no circular dependencies exist between
different collective operations. In §4.3, we describe how the first and last properties are enforced.

3.3.4 Discussion
It may be apparent that the partition statement can be implemented in terms of teamsplit, such as
the following:

teamsplit (t ) {
switch (t .myChildTeam ( ) .teamRank ( ) ) {
case 0 :
model_ocean ( ) ;
break ;

case 1 :
model_land ( ) ;
break ;

case 2 :
model_atmosphere ( ) ;

}
}

While this is true, we decided that an explicit construct for task decomposition is cleaner and more
readable than the combination of teamsplit and branching. The two constructs also differ with
respect to the superset operations described below.

3.3.5 Superset Operations
By design, the partition and teamsplit constructs require a user to exit or enter a construct to move
up or down a team hierarchy or to use multiple team hierarchies. We suspect that it may be useful,
however, to be able to temporarily move up one or more levels in a team hierarchy without exiting
a partition or teamsplit, though we have yet to find concrete examples where this is the case.
Nevertheless, our implementation contains a superset statement that ascends the team hierarchy
within a specified lexical scope:

superset(i) B

This results in execution of block B in the context of the team that is i levels up from the enclosing
team, i.e. that team’s ith ancestor. As an example, consider the following code:

teamsplit (t ) {
Reduce .add (data [t .myChildTeam ( ) .rank ( ) ] , myData ) ;
superset ( 1 ) {

Ti .barrier ( ) ;
}
. . .

}
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Inside the teamsplit, threads execute as members of their respective subteams of t, so the reduction
is over these teams. If threads read data from another team later in the teamsplit, then a global
synchronization is necessary to ensure that the reductions have completed on all threads. The
superset operation accomplishes this by walking up one level to the global team and performing a
barrier.

A superset operation is considered to be a collective operation in the enclosing team as well as
its i ancestors. Since teams in a partition execute different code, the i enclosing team statements
must all be teamsplits in order to conform to textual collective alignment. It is an error if all threads
do not execute the superset in any of the i ancestral teams, if they differ on the value of i, or if the
enclosing team has fewer than i ancestors. Superset statements may be nested, but they may not
contain any teamsplit or partition statements.

We anticipate that the most likely use of a superset operation will be to perform a collective,
such as a barrier, at a higher level in the team hierarchy. As such, we have implemented versions
of many collective operations that operate at higher levels without requiring an explicit superset
construct. For example, the call Ti.barrier(1) executes a barrier on the parent team. Of course,
such operations must meet the same requirements as the superset construct itself.

3.4 Implementation
We have implemented hierarchical team constructs on top of GASNet teams, which are flat group-
ings of threads. Each node in a team hierarchy is associated with a separate GASNet team, which
is created when a team is initialized. We avoid creating unnecessary duplicate GASNet teams by
caching them at the Titanium level and checking whether or not there is an existing GASNet team
corresponding to a particular Titanium subteam.

The lexical teamsplit, partition, and superset operations are implemented in the compiler as
calls to the following library functions:

single static TeamHandle checkedSplit (Team t , boolean isTeamsplit ) ;
single static TeamHandle split (Team t , boolean isTeamsplit ) ;
single static void unsplit (TeamHandle th ) ;

Upon entering a new team context, checkedSplit or split is called, depending on whether or
not the user has enabled error checking. (See §4.2.3 for more details on error checking.) This
returns a TeamHandle immutable object that encodes the previous team before entering the new
context. When exiting that context, the handle is passed to unsplit, restoring the previous team
context.

As with any lexical construct, such as the synchronized statement of Java, the compiler
must ensure that the previous context is restored even when exiting the construct through an abrupt
termination. An abrupt termination is a termination that exits a statement at any point other then its
syntactic exit point and includes return statements and thrown exceptions. The Titanium compiler
instruments abrupt terminations to restore the previous team context, if necessary.

Finally, when entering a new team context, the Titanium runtime sets the current GASNet
team on each thread accordingly and updates a handful of variables to reflect the properties of
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the new team. As a result, there is very low overhead to switching team contexts, satisfying the
performance goal of §3.1. In order to execute a collective, the Titanium runtime passes the current
GASNet team to the GASNet collectives library, resulting in the desired behavior that collectives
only execute over the current team.
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Chapter 4

Alignment of Collectives

Many scientific applications are written in a bulk-synchronous style that alternates between com-
munication and computation phases, or between different phases of physical simulations such as
the ocean and atmospheric models in a climate simulation. These applications frequently require
all threads to synchronize and communicate together. Like other SPMD languages, Titanium pro-
vides collective operations to support this. The four primitive collective operations in Titanium are
barriers, broadcasts, exchanges, and reductions. A barrier forces threads to wait until all threads
have reached it. A broadcast is a one-to-all communication construct that sends a value from one
thread to the others. An exchange is an all-to-all communication construct that copies one value
from each thread to all threads. A reduction combines values from each thread into a single value
on one thread or an all threads. More complicated collectives can be built using these primitives,
including global view operations like those in the data parallel model

Collective operations introduce the possibility of deadlock if not all threads execute the same
sequence of collectives. The collectives are aligned if all threads do execute the same sequence.

Most SPMD languages do not attempt to guarantee alignment of collectives. Some languages
such as UPC have named collectives. These collectives take an integer value as an argument.
When the collective executes, it compares the value on all threads and generates an error if they
differ. However, different collective operations in a program can have the same value under this
scheme. Even if each collective in a program has its own unique value, as soon as the collective
is wrapped inside a function, the alignment scheme can be defeated. For example, a call to the
following function acts like an unnamed barrier:

void barrier2 ( ) {
upc_barrier 315415431;

}

More complicated and less malicious examples of this can occur in practice. A further flaw with
named collectives is that they can result in late error messages: the actual program statement1 that
causes misalignment can be far from the affected collective and is not detected or reported to the
user.

1In this chapter, we use the term statement to refer to both statements and expressions in a program.
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Aiken and Gay introduced the concept of structural correctness to enforce alignment of col-
lectives and developed a static analysis that determines whether or not a program is structurally
correct [1, 39]. The following code is not structurally correct:

if (Ti .thisProc ( ) % 2 == 0)
Ti .barrier ( ) ; / / even ID t h r e a d s

else
; / / odd ID t h r e a d s

Titanium provides a stronger guarantee of textually-aligned collectives: not only do all threads
execute the same number of collectives, they also execute the same textual sequence of collectives.
In addition, all control-flow decisions affecting execution of collectives must match on all threads,
avoiding the problem with named collectives above. Thus, both the above structurally incorrect
code and the following structurally correct code are erroneous in Titanium:

if (Ti .thisProc ( ) % 2 == 0)
Ti .barrier ( ) ; / / even ID t h r e a d s

else
Ti .barrier ( ) ; / / odd ID t h r e a d s

The fact that Titanium collectives are textually aligned not only guarantees deadlock freedom but
also that code immediately following two different barrier operations cannot execute simultane-
ously. In §7, we rely on this fact to define an efficient but precise concurrency analysis.

Titanium currently relies on a static type system to ensure textual alignment of collectives. We
discuss this type system and its drawbacks in §4.1. We then introduce a new dynamic scheme for
enforcing textual alignment, starting with global collectives and then extending it to collectives
over teams.

4.1 The Single Type System
In order for collectives to be textually aligned, all expressions that control the execution of collec-
tives must evaluate to coherent values on all threads. In Titanium, the single type system ensures
that this is the case. A value is single if it is replicated and coherent across all threads, meaning
that all threads must have a copy of the value, and the values must have some semantic equivalence.
The entire set of rules for what values are coherent is described in the Titanium language reference
[43] and is fairly complicated, so we describe only a subset of the rules here.

4.1.1 Single Values
For primitive types, the coherency rules are straightforward. Compile-time and runtime constants
(such as the number of executing threads) are single, as well as expressions composed entirely of
single values. Variables are single if they are annotated as such by the programmer. Such variables
can only by assigned with single values.
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The rules for method calls are more complex. In order for the result of a method call to be
single, its return type must be declared as single, the object being dispatched on must be single for
an instance method, and all parameters declared as single must be passed single arguments. These
rules are illustrated below:

class Foo {
int single bar (int single x , int y ) { . . . }
static void baz ( ) {
Foo single a = . . . ;
Foo b = . . . ;
int single i = 1 ;
int j = Ti .thisProc ( ) ;
a .bar (i , j ) ; / / r e t u r n i s s i n g l e
b .bar (i , j ) ; / / r e t u r n i s n o t s i n g l e s i n c e b i s n o t
a .bar (j , i ) ; / / r e t u r n i s n o t s i n g l e s i n c e x = j i s n o t

}
}

A non-array allocation results in a single object if the constructor call obeys the rules for
method calls above. A field dereference is single if the referenced object is single and the field
is declared as single. Finally, an array allocation results in a single array if the size of the array is
single. An array also can be declared to hold only single values, implying that the elements of the
array are coherent across all threads.

4.1.2 Control-Flow Restrictions
All control-flow decisions that can affect the execution of collective operations must only depend
on single expressions. Collective operations can be buried beneath many layers of code, such as
function calls, so the following definition is useful:
Definition 4.1.1. (Global Effects) A statement has global effects if it or any of its substatements
is a primitive collective operation, a method call that a programmer has declared as global by
qualifying it with the sglobal keyword2, or an assignment to certain locations that are declared
as single.

All branches, loops, and method calls that have global effects must only be controlled by single
expressions. Exceptions have more complicated restrictions, and the associated rules can be found
in the Titanium language reference [43].

4.1.3 Problems in the Single Type System
As hinted at above, the single type system rules are complicated. Feedback from Titanium users
indicates that while they appreciate the fact that the type system prevents deadlock, the error mes-

2In the current Titanium language specification, the sglobal keyword has been deprecated in favor of the
single keyword. In this thesis, however, we will use sglobal to prevent confusion with non-global methods
that have a single return or single arguments.
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sages can be confusing at times due to the conservative nature of the analysis.
The type system requires the programmer to annotate many variables with the single key-

word. Since a single variable can only be assigned an expression composed of other single vari-
ables, it may be necessary to propagate these annotations throughout a program. This can be quite
burdensome, especially for quick prototyping of small pieces of code.

There are additional problems in the type system, such as its handling of arrays and casts to
single. Most importantly, we have not yet found a clean way to extend the type system to allow
collectives over thread teams. We discuss all three issues in more detail below.

4.1.3.1 Arrays and Polymorphism of Single

The Titanium type system treats the single qualifier on method parameters, method returns, and
instance fields polymorphically, depending on use. A method with the signature

static int single foo (int single x ) ;

may be applied to both single and non-single arguments, returning int single for the former and
int for the latter. Similarly, given the type definition

class Int {
int single val ;
int single intValue ( ) {

return val ;
}

}

and variables x of type Int single and y of type Int, x.val and x.value() return int single
while y.val and y.value() return int.

When it comes to array types, however, the single qualifier is only polymorphic at the top-
level. As explained above, an array can be declared as single at the top level, as in int[]
single. This indicates that it has the same number of elements on each thread. An array can
also be declared as single at the element level, such as int single[] single, implying that the
elements are coherent across all threads. Thus the method

static int single bar (int [ ] single x ) {
x [ 0 ] = Ti .thisProc ( ) ; / / s e t t o non−s i n g l e v a l u e
return x .length ; / / r e t u r n s i n g l e v a l u e

}

can be applied to arrays of type int[] and int[] single, returning an int single in the latter
case. The method cannot, however, be applied to int single[] single arrays, as the assignment
would be illegal. On the other hand, the method

static int single baz (int single [ ] single x ) {
Baz .val = x [ 0 ] ; / / s e t a s i n g l e v a r i a b l e t o a s i n g l e v a l u e
return x [ 1 ] ; / / r e t u r n s i n g l e v a l u e

}
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can only be applied to arrays of type int single[] single. If Baz.val is a static variable de-
clared as int single, the assignment would be invalid if the input array were not single at the
element level.

This makes it impossible to use the single qualifier to specify coherence of array-based data
structures. Consider two definitions of integer vectors.

class IntVector1 {
int [ ] single values ;
int single length ( ) {

return values .length ; / / OK
}
int single elementAt (int single i ) {

return values [i ] ; / / t y p e e r r o r −− v a l u e s [ i ] i s non−s i n g l e
}

}

class IntVector2 {
int single [ ] single values ;
int single length ( ) {

return values .length ; / / OK
}
int single elementAt (int single i ) {

return values [i ] ; / / OK
}

}

The first definition, IntVector1, can be used polymorphically, but it contains a type error since
the single qualifier at the top-level of an array only specifies that the array has the same length
on all threads and says nothing of their elements. The second definition, IntVector2 is correctly
typed, but cannot be used polymorphically.

This limitation is particularly relevant when it comes to the String class. The contents of a
String single are contained in an array of type char[] single. Since this array is single only
at the top-level, its elements are not guaranteed to be coherent across all threads.

4.1.3.2 Casts to Single

The Titanium type system allows arbitrary casts to single, which go unchecked at runtime. This is
used for convenience by some users to circumvent the type system, but it is also used to get around
the limitations discussed in §4.1.3.1. For example, a polymorphic integer parsing function could
be written as follows.

static int single parseInt (String single s ) {
int single result = 0 ;
for (int single i = 0 ; i < s .length ( ) ; i++) {
result = 10 ∗ result +
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(int single ) Character .getNumericValue (s .charAt (i ) ) ;
}
return result ;

}

This procedure requires a cast to single in order to function as desired. The cast is unsafe,
however, since the contents of a String single are not guaranteed to be coherent.

Unfortunately, in a case like this, it is unclear how to check the cast at runtime. This is be-
cause parseInt() is polymorphic – it may be called by all threads, in which case the cast can be
checked using communication, but it may also be called by a subset of the threads, in which case
communication cannot be done.

4.1.3.3 Team Collectives

The most significant drawback to the single type system is that there is no obvious way to extend
it to enforce alignment of collectives over thread teams. Consider the following code that uses the
partition construct introduced in §3.

static int single x ;
static Team single team ;
static single void bar ( ) {

partition (team ) {
{ setX ( 1 ) ; }
{ setX ( 2 ) ; }

}
if (x == 1) {

Ti .barrier ( ) ; / / m i s a l i g n e d b a r r i e r
}

}
static single void setX (int single y ) {

x = y ;
}

Since single is used to ensure alignment of collective operations, it only implies coherence across
all threads of a given team. This can cause problems if a single variable is updated within a partition
or teamsplit statement. In the code above, threads in different teams assign different values to the
single variable x. Since all threads in a team assign the same value to x, the code is correctly typed.
However, it will deadlock, since the barrier after the partition is executed by all the threads, which
now have incoherent values of x.

There appears to be no easy solution to the fact that teams are lexically scoped, while single
variables may have global scope. We can attempt to restrict single variables from being assigned
in a different team context from which they were defined, but that would also restrict methods such
as setX that assign to static single variables from being called in the context of any team other
than the global one. This would be potentially confusing to programmers, and it is less clear how
single instance variables would be handled.
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4.2 Dynamic Alignment
Given the problems in the single type system described in §4.1.3, we present an alternative, dy-
namic scheme for enforcing textual alignment of collectives. Such a scheme provides advantages
over not checking alignment at all. On many supercomputing and distributed computing environ-
ments, users are charged according to time used. An application run that deadlocks can waste many
compute hours before the problem is noticed, resulting in actual cost to the user. While deadlock
detection schemes can alleviate this problem, they only detect erroneous symptoms rather than
the cause. In particular, misalignment earlier in a program may result in a deadlock much later,
and deadlock detection would not report the actual source of the alignment error. Our dynamic
alignment scheme, on the other hand, does so, preventing deadlocks from occurring in the first
place.

4.2.1 Alignment Rules
The basic conditions that guarantee textual alignment of collectives are as follows3:

1. If any branch of a conditional has global effects, then all threads must take the same branch.

2. If the body/test of a loop has global effects, then all threads must execute the same number
of iterations.

3. If a method call has global effects, then the dynamic dispatch target of the call must be the
same on all threads.

4. The source thread in a broadcast expression and target thread in a reduction must evaluate to
the same value in each thread.

All four conditions above are enforced by the single type system.
Multiple alignment schemes can be defined based on different definitions of global effects.

Definition 4.2.1. (Strict Alignment) In strict alignment, a statement has global effects if it or any
of its substatements is a primitive collection operation or calls a method declared as sglobal.

Strict alignment uses a similar definition of global effects as the single type system. The only
difference is that it does not restrict assignments to locations declared as single, since such decla-
rations are not present in dynamic alignment. A weaker scheme is possible as follows:
Definition 4.2.2. (Weak Alignment) In weak alignment, a statement has global effects if it or any
of its substatements executes a primitive collection operation at runtime.

To illustrate the difference between strict and weak alignment, consider the following code that
is legal under weak alignment but prohibited under strict alignment:

if (Ti .thisProc ( ) % 2 == 0) / / even t h r e a d s
if (Ti .thisProc ( ) % 2 == 1) / / odd t h r e a d s

Ti .barrier ( ) ; / / n e v e r r e a c h a b l e
3We omit discussion of exceptions here, as the rules are essentially the same as in the single type system.



CHAPTER 4. ALIGNMENT OF COLLECTIVES 30

Under weak alignment, the code above never executes the barrier, so it does not have global effects
and not all threads must take the same branch of the outer conditional. Under strict alignment,
however, the then branch does have global effects since one of its substatements is a barrier, so all
threads must take the branch.

An important feature of strict alignment is that its rules are static: it is possible to determine
which statements have global effects at compile-time. The weak alignment rules, on the other
hand, are partially dynamic. For some statements, it can be statically determined that they never
execute primitive collectives. For others, however, it can only be determined at runtime whether or
not they do so. As a result, we believe that strict alignment is preferable both for compiler analysis
purposes and for programmer reasoning.

4.2.2 Dynamic Enforcement
The alignment rules are enforced dynamically by tracking those conditionals, loops, and method
calls that have global effects. (For the purposes of this section, global effects are according to the
strict definition above.). The Titanium compiler has an inference system that statically determines
which statements have global effects.

At program startup, each thread creates an empty list that records its execution history. In
addition, a hash of this list is maintained, initially set to some value h0. The following operations
update the list, with the hash updated accordingly:

• On a non-static dispatch to a method that has global effects, an entry is added to the list with
the method that is the dynamic dispatch target.

• On a branch of a conditional that has global effects, an entry is added recording the branch
taken.

• On each iteration of a loop that has global effects, an entry is added recording that a loop
iteration occurred.

• On reaching a broadcast or reduction operation, an entry is added with the value of the source
thread specified by the broadcast or the target thread specified by the reduction.

When performing a primitive collective, the hashes for all threads are first compared. This can be
done by using a comparison tree, or simply by broadcasting the hash value from a single thread
and comparing it to the value on each other thread. Our implementation currently uses the latter. If
the hash values match, the collective is executed. If any two hashes differ, however, then execution
halts, and the corresponding histories are used to generate an appropriate error message. For
performance reasons, the execution history list can be eliminated or reduced in size, at the cost of
poorer error messages.

The above procedure is sufficient for enforcing strict alignment. Weak alignment, on the other
hand, only guarantees alignment of statements that execute primitive collectives at runtime. Thus,
if a statement never executes a primitive collective, the execution history and hash must be restored
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Figure 4.1: Difference in execution between strict and weak alignment.

to their previous values once the statement completes. This necessitates saving the old history and
hash state before making any of the above changes.

Figure 4.1 illustrates the execution of the following code under strict and weak alignment:

if (Ti .thisProc ( ) == 0) {
fakeBarrier ( ) ;

} else {
fakeBarrier ( ) ;

}
Ti .barrier ( ) ;

Here, fakeBarrier is a method declared as sglobal but that does not execute any primitive
collective operations. As such, the code should fail under strict alignment but succeed under weak
alignment.

4.2.2.1 Optimizations

It is possible to reduce the number of history updates and checks if they can be proven redundant.
If two history updates always occur in sequence with no intervening collectives, then they can be
combined into a single update. This may occur in nested conditionals or conditionals inside loops.
Similarly, two history checks can be redundant if no updates occur between them.

Another optimization is a hybrid static/dynamic analysis that would apply a static analysis
to determine which branches, loops, and method calls can be proven to depend only on single
values and then eliminate their associated updates. This would also make it much more likely for
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consecutive collectives not to have any updates between them, allowing their associated history
checks to be removed.

4.2.2.2 Program Coverage

As is usually the case with dynamic analysis, the above enforcement scheme does not provide full
program coverage, which is a drawback compared to the static type system. In particular, it does
not check alignment of code that is not reached at runtime, such as the following:

if (<some rare condition>)
if (Ti .thisProc ( ) == 0)

Ti .barrier ( ) ;

An error is only generated if the rare condition is taken. Similarly, if the rare condition was
replaced by an expression dependent on the number of threads, such as Ti.numProcs()> 100, then
an error would only occur if the program was run with the required number of threads to trigger
the condition.

Weak alignment provides somewhat less coverage than strict alignment. Consider the above
code with the two conditions switched. Now, strict alignment would generate an error since the
threads are not aligned with respect to the outer conditional, which has global effects. Weak
alignment, on the other hand, will only find an error if the rare condition is met, since no primitive
collective operation is executed otherwise.

4.2.3 Implementation
We have implemented the two dynamic enforcement schemes in the Titanium compiler. The com-
piler instruments each program to perform the required tracking and checking4. We do not apply
the optimizations described in §4.2.2, since our experimental results in §8.2.2 show them to be
unnecessary.

For both strict and weak alignment, the compiler provides a default mode where only a hash
is kept corresponding to execution history as well as a debugging mode that maintains the exe-
cution history list. The default mode requires less memory and fewer operations at runtime than
the debugging mode, so it could potentially be more efficient. The debugging mode only stores
execution history between successive primitive collective operations, since successful completion
of a collective implies that it and all statements preceding it are properly aligned.

The Titanium compiler provides an escape hatch for when dynamic error checking adversely
affects performance. Users generally switch to a less-safe, higher-performance mode that elides
error checking such as null-pointer and array-bounds checks for production runs, under the as-
sumption that such errors have already been caught while debugging a program. This escape hatch
can also be used if dynamic alignment checking proves to be too expensive, as the compiler can
remove those checks as well.

4For weak alignment, we could instead examine the program stack on each thread. However, this would require a
far more complicated implementation, as stack layout depends on the target machine and the C compiler.
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4.3 Alignment of Team Collectives
We now turn our attention to alignment of collectives over thread teams. We extend the global
dynamic alignment scheme of §4.2 to handle team collectives as well. In addition, the new scheme
ensures that a program makes proper use of the partition and teamsplit constructs introduced in §3.

4.3.1 Alignment Rules
Titanium requires that collectives be textually aligned on all threads that participate in a collective.
In order to guarantee this, we require a definition of team effects rather than global effects. As with
global effects, the exact definition of team effects depends on the alignment scheme used.
Definition 4.3.1. (Strict Alignment Team Effects) In strict alignment, a statement has effects on
team t if it or any of its substatements is a primitive collection operation on team t or calls a method
declared as sglobal in the context of t.
Definition 4.3.2. (Weak Alignment Team Effects) In weak alignment, a statement has effects
on team t if it or any of its substatements executes a primitive collection operation on team t at
runtime.

We proceed to define an enforcement scheme that works for both strict and weak alignment.
The basic conditions that guarantee collective alignment consist of the following global rules,
which are an extension of the rules in §4.2.1:

1. If any branch of a conditional has effects on team t, then all threads in t must take the same
branch.

2. If the body/test of a loop has effects on team t, then all threads in t must execute the same
number of iterations.

3. If a method call has effects on team t, then the dynamic dispatch target of the call must be
the same on all threads in t.

4. The source thread in a broadcast and target thread in a reduction on team t must evaluate to
the same value on each thread in t.

5. Team objects passed to a partition or teamsplit on team t must have consistent immediate
subteams across all threads in t.

6. The level argument passed to a superset statement or collective that targets team t must
evaluate to the same value on all threads in t.

In addition, the following local rules must be satisfied:

7. Team objects passed to a partition or teamsplit must match the current team at the top level.

8. A superset operation with a level argument i must be enclosed by i teamsplit statements,
with no intervening partition statements.
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4.3.2 Alignment Enforcement
The basic idea behind the dynamic enforcement system in §4.2.2 and the extension here is that
each thread tracks all control-flow decisions that potentially affect alignment of a collective. Prior
to executing a collective, the threads cooperate to perform a global check to ensure that they are all
aligned. Since this check runs before each collective, misaligned collectives are never executed, as
they are detected in the preceding check. A failed check results in the program terminating with an
error message describing the sequence of control-flow decisions that resulted in the misalignment.
An implicit barrier with a corresponding alignment check occurs at program end, catching any
unmatched collectives.

The first four alignment rules are enforced by inserting an entry in a per-thread tracking list
recording the decision made when executing an affected program expression or statement. We also
maintain a running summary hash, as described in §4.2.2. Since partition and teamsplit statements
are collectives themselves, rules 5 and 7 can be checked directly when entering such statements.
We come back to rules 6 and 8 later.

In order to extend dynamic enforcement to work on all teams, we now keep separate track of
control-flow decisions that may affect alignment of collectives on different teams. To simplify the
discussion, we ignore the existence of superset operations until later. Then it is sufficient for both
strict and weak alignment to record control-flow decisions in the tracking list for the current team.
Upon encountering a collective operation, the tracking list is checked for consistency among only
the threads in the current team. A final check must be made at the end of a partition or teamsplit to
ensure that no unmatched collectives exist within such a statement.

As a concrete example, consider the following code:

1 if (a ) Ti .barrier ( ) ;
2 teamsplit (u ) {
3 if (b ) Ti .barrier ( ) ;
4 }
5 if (c ) Ti .barrier ( ) ;

Let t be the current team outside the teamsplit. When the conditional on line 1 is executed, each
thread in team t records the branch taken in the tracking list for t. Those threads that take the then
branch await a check before performing the barrier. If other threads do not take this branch, they
perform a check before the teamsplit, resulting in the error being detected. Upon encountering
the teamsplit and executing a successful check, the threads in t ensure that team u is equivalent
to t at the top level and that the immediate subteams of u are the same on all threads. If this is
the case, then each thread’s corresponding subteam in u becomes the new current team on that
thread, and control-flow decisions within the teamsplit are now recorded in the tracking list for
u.myChildTeam(). Thus, it is perfectly valid for one subteam of u to execute the barrier on line
3 while other subteams skip it. Let v refer to the first subteam of u. Then all threads in v record
the branch taken, and if some threads in v take the then branch, they will await a check before
performing the barrier. If other threads do not take the branch, then they will perform a check at
the end of the teamsplit, resulting in detection of the error. Finally, upon leaving the teamsplit, t
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once again becomes the currently executing team, so that alignment of the barrier on line 5 will be
checked with respect to team t.

To ensure that alignment is checked with respect to the proper team, it is necessary to ensure
that alignment is consistent in the current team before entering a new team context. The checks
prior to teamsplit and partition and at their end ensure that this is the case.

4.3.2.1 Superset Operations

Superset operations complicate alignment checking since they take in a level parameter that may
not be known at compile-team. Consider the following code:

if (d ) {
int n = . . . ; / / n o t a compi le−t ime c o n s t a n t
Ti .barrier (n ) ;
Ti .barrier (n+1) ;

}

Prior to entering the branch, a thread may not be able to determine at what levels the barriers
execute and thus which teams’ tracking lists need to be updated. In order to handle this, an or-
phan tracking list must be maintained that keeps track of control-flow decisions that may affect
alignment of a superset operation. Then when such an operation is encountered, the orphan list’s
contents are copied into that of the teams affected by the operation.

A superset operation is defined to have team effects on all teams between the current team
and the target team5. Thus, in checking a superset operation, alignment must first be checked at
the current team level and all intermediate levels up to the target level, in order, to ensure that
alignment is satisfied at every level. Then rules 6 and 8 in §4.3.1 are checked before performing
the superset operation.

4.3.3 Implementation
We have implemented team extensions to dynamic enforcement in the context of weak alignment.
As alluded to in §4.3.2, separate tracking lists are recorded for each team, along with separate
summary hashes. Upon encountering a partition or teamsplit, team arguments are compared on all
threads in the enclosing team, ensuring that the arguments match. Prior to executing any collective
operation on a particular team, the runtime compares hashes for that team only, since the partition
and teamsplit checks guarantee that all threads in that team are in the same team context.

As with global alignment checks, we allow a user to turn off team alignment checks in order to
eliminate their overhead. This includes both the specific partition and teamsplit checks as well as
those for general collectives. We take advantage of this facility in the application case studies in
§8.1.

5In strict alignment, a superset operation that is not executed at runtime is defined to have effects only on the
current team, since the target team is unknown.
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Chapter 5

Analysis Background

We now turn our attention to the analysis of recursive single program, multiple data (RSPMD)
programs. Prior work has demonstrated that the flat SPMD model enables many simple yet precise
analyses, including data locality analysis [65], data sharing analysis [66], concurrency analysis
[26, 78, 99, 45, 111, 52], and pointer analysis [54]. We would like to show that RSPMD programs
are similarly amenable to analysis.

We begin by describing the machine model used in our analyses, followed by an overview of
pointer and concurrency analysis and their applications to further program analysis and optimiza-
tion. We then demonstrate how team information can improve analysis of RSPMD programs and
discuss a possible abstract representation of this information for use in pointer and concurrency
analysis.

5.1 Machine Model
Consider a set of machines arranged in an arbitrary tree hierarchy with the machines as leaves,
such as that of Figure 5.1. A machine constitutes a single computational element in the system,
and we assume a one-to-one correspondence between machines and threads in a program. Each
machine has a corresponding machine number. The depth d of the hierarchy is the number of
levels it contains. The distance between machines is equal to the number of levels from the bottom
of the hierarchy to that containing their least common ancestor, with d− 1 denoting the top level.
The distance is thus d − 1 − n, where n is the level number of the least common ancestor. A
pointer on a machine m has a corresponding width, and it can only refer to locations on machines
whose distance from m is less than or equal to the pointer’s width minus one. Thus, width is in
the range [1, d]. (We use one-indexing for width, in which lower numbers refer to lower levels in
the machine hierarchy, to distinguish it from level indices in a hierarchy, in which lower numbers
refer to higher levels.) Since each pointer has a width and the set of possible widths corresponds
to the number of levels in an arbitrary machine hierarchy, the model we define here is an instance
of the hierarchical partitioned global address space (HPGAS) memory model.

The distance function defined above is an ultrametric, since it satisfies the following properties
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Figure 5.1: A possible machine hierarchy with four levels. The width of arrows and their labels
indicate the hierarchy distance between the endpoints, and the level numbers at right correspond
to those in the machine team.

for all machines x, y, z:

d(x, y) > 0 if x 6= y

d(x, y) = 0 if x = y

d(x, y) = d(y, x)

d(x, y) ≤ d(x, z) + d(y, z)

d(x, y) ≤ max(d(x, z), d(y, z))

A k-hierarchically well-separated tree (k-HST) is a special case of an ultrametric. In such a tree,
the lengths of each path segment from the root to any leaf decrease by a factor of k in each step.
Fakcharoenphol, Rao, and Talwar showed that any graph metric can be approximated by a 2-HST
within a factor of O(log n), where n is the number of nodes in the graph [35]. Though the distance
function above is a 1-HST, the pointer analysis can be easily modified to use 2-HST functions,
allowing arbitrary metric machine topologies to be well-approximated by the analysis.

5.2 Pointer Analysis
Pointer analysis, or points-to analysis, statically determines the set of objects that may be ref-
erenced by each pointer in a program. Pointer analysis was first described and implemented for
the C programming language by Emami [34] and Andersen [6]. Here, we provide an overview
of context-insensitive, flow-insensitive pointer analysis for object-oriented languages such as Java
and Titanium.

Pointer analysis is an example of abstract interpretation, where the execution of a program
is approximated statically. In the case of pointer analysis, each allocation site corresponds to an
abstract location, which represents all objects allocated at that site at runtime. Each allocation
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Figure 5.2: Example of pointer width with respect to the machine hierarchy team.

site only constructs objects of a single type1, and its corresponding abstract location has the fields
specified by that type. Every variable in the program and field of each abstract location has a
points-to set consisting of abstract locations that may be referenced at runtime by that variable or
field. The analysis iterates over the whole program, updating points-to sets according to statements
and expressions in the program. For example, consider the assignment

v = x .f ;

The analysis examines the points-to set of x, and for each abstract location in that set, it examines
the points-to set for the field f, collecting the resulting abstract locations. These locations then are
copied into the points-to set of v. The analysis continues to iterate over the program, interpreting
each statement and expression, until a fixed point is reached.

We have previously described a pointer analysis for Titanium that takes into account machine
hierarchy [54]. As described in §5.1, each pointer has a width in the range [1, d] where d is the
depth of the machine hierarchy, restricting the set of threads on which the referenced data can be
located. Figure 5.2 shows examples of pointer width with respect to a sample machine hierarchy
team.

In the hierarchical pointer analysis, abstract locations have both a corresponding allocation site
and a width. For each allocation site, d abstract locations are created, each with a separate width.
When an abstract location escapes its creating thread, either through a collective operation such as
a broadcast or through a dereference, the result is an abstract location with the same allocation site
but a greater width. As a concrete example, consider the following statement:

w = broadcast x from 0 ;

1We ignore Java reflection for simplicity.
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This statement assigns thread 0’s value of x to w on all threads. Suppose that in the pointer analysis,
the points-to set of x contains the lone abstract location (l, 1), meaning the abstract location with
width 1 corresponding to allocation site l. Then the broadcast results in the abstract location (l, d),
which is added to the points-to set of w. The resulting width is d since the broadcast is a global
operation over all threads.

5.2.1 Applications
Many client analyses and optimizations can take advantage of the information computed by pointer
analysis. Three examples are locality analysis, sharing analysis, and race detection.

5.2.1.1 Locality Analysis

In partitioned global address space (PGAS) languages such as Titanium, a pointer can reference
data located on any thread, even if the source and target of a pointer do not share the same physical
memory space. A pointer has a particular width that specifies where the referenced data may
be located, with greater widths allowing reference to data on more distant threads. In Titanium,
pointers have maximal width by default and must be qualified as local in order to specify a
smaller width. Unfortunately, pointers with greater width can be more expensive to dereference
than pointers with smaller width, even when the target location is the same, since a runtime check
of where the data is located may be required in the former case. Liblit and Aiken demonstrated
up to a 56% improvement in application running time with an automated analysis to infer local
qualifiers [65]. This illustrates the need for a locality analysis to compute locality information at
compile time.

Liblit and Aiken’s analysis uses a constraint solver in order to compute locality information.
Unlike pointer analysis, their analysis does not distinguish between allocation sites, so pointer
analysis should be able to produce more precise results. Computing locality information from
points-to sets is trivial in a hierarchical pointer analysis: the width of a variable is the maximum
width of any of the abstract locations in its points-to set.

5.2.1.2 Sharing Analysis

In parallel programs, sharing analysis, also called escape analysis, is relevant to many applications.
Sharing analysis statically determines what data may be shared between multiple threads. If an
object is provably private to a single thread, a compiler can safely allocate it in private memory,
such as the thread’s stack or scratchpad memory. Synchronization can also be eliminated for
private objects. This is especially important in library code that tends to be over-synchronized for
safety. For example, the java.util.Vector is synchronized, so an application that uses thread-
private instances of the class can execute many spurious synchronizations. Bogda and Hölzle
demonstrated up to a 36% improvement in benchmark performance by automatically eliminating
synchronization on private objects in Java applications [16]. Others have also used sharing analysis
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to eliminate synchronization [3] or to enforce a sequentially-consistent memory model [64, 95, 96,
60, 91, 66, 51].

Hierarchical pointer analysis can be used for sharing analysis. An allocation site is private if no
points-to set contains an abstract location corresponding to that site with width greater than 1. A
variable is private if all abstract locations in its points-to set correspond to private allocation sites.

5.2.1.3 Race Detection

A race condition occurs when two memory accesses can occur concurrently on different threads,
they can be to the same memory location, and at least one of them is a write [76]. Race conditions
can result in erroneous program behavior, so static detection of races is an important problem in
program analysis.

Pointer analysis is a key component of race detection, since it can determine whether or not
two memory accesses may be to the same location. Variables are said to be aliased if they may
reference the same location. In hierarchical pointer analysis two variables x and y are aliased
across threads if:

• The points-to set of x contains an abstract location (l, a) and that of y contains a location
(l, b) that correspond the the same allocation site.

• Either a or b is greater than 1, meaning that at least one the referenced locations may not be
thread-local and thus may overlap with the other.

As an example, consider the following code:

1 Foo w = new Foo ( ) ;
2 Foo z = broadcast w from 0 ;
3 w .f = 4 ;
4 return z .f ;

The points-to set of w contains the abstract location (1, 1), so that of z contains the location (1, d),
where d is the depth of the machine hierarchy. Thus w and z are aliased across threads, and z is
aliased with itself across threads. On the other hand, w does not alias itself across threads. As
a result, the write on line 3 does not by itself constitute a race condition, since the writes are to
thread-local locations on all threads. However, the combination of that write and the read on line
4 is a race condition, since other threads read the location in line 4 that is concurrently written in
line 3.

5.3 Concurrency Analysis
Information concerning which statements and expressions may run concurrently is important in
many analyses and optimizations. Concurrency analysis statically computes this information, an-
alyzing the synchronization structure of a parallel program. We previously described a precise and
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efficient concurrency analysis for SPMD programs [52]. This analysis traverses a graph represen-
tation of a program, and two expressions are never concurrent if all paths between them contain a
global synchronization operation. We review the analysis in more detail in §7.1.

As an example of concurrency analysis, consider the following code that makes use of a barrier
operation:

1 Foo w = new Foo ( ) ;
2 Foo z = broadcast w from 0 ;
3 w .f = 4 ;
4 Ti .barrier ( ) ;
5 return z .f ;

A barrier operation requires all threads to reach it before any can proceed. In the above code, the
only path from the write on line 3 to the read on line 5 contains a global barrier synchronization.
As a result, they never execute concurrently, and the code does not contain a race condition.

Concurrency information is useful for analyses and optimizations besides race detection. For
example, it can be used in synchronization elimination, particularly in eliminating redundant bar-
rier operations [26, 78, 99]. In addition, concurrency information can be helpful when providing a
sequentially-consistent memory model, as we demonstrate next.

5.4 Sequential Consistency
For a sequential program, compiler and hardware transformations must not violate data dependen-
cies: the order of all pairs of conflicting accesses must be preserved. Two memory accesses conflict
if they access the same memory location and at least one of them is a write. The execution model
for parallel programs is more complicated, since each thread executes its own portion of the pro-
gram asynchronously and there is no predetermined ordering among accesses issued by different
threads to memory locations that are shared between them. A memory consistency model defines
the memory semantics and restricts the possible execution order of memory operations.

Titanium’s memory consistency model is defined in the language specification [43]. Here are
some informal properties of the Titanium model.

1. Locally sequentially consistent: All reads and writes issued by a given thread must appear
to that thread to occur in exactly the order specified. Thus, dependencies within a thread
must be observed.

2. Globally consistent at synchronization events: At a global synchronization event such as
a barrier, all threads must agree on the values of all the variables. At a team synchronization
event such as a team barrier, all threads in the team must agree on the values of all variables.
Finally, upon entry to a critical section, a thread must see all updates made prior to and
within that critical section by threads that have previously entered it.

Henceforth, we will refer to the Titanium memory consistency model as the relaxed model.
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a [set data = 1]

x [set flag = 1] b [read data]

y [read flag]
T1 T2

Initially, flag = data = 0

y sees effect of x b sees effect of a possible sequential order
yes yes a⇒ x⇒ y ⇒ b
yes no none
no yes a⇒ y ⇒ b⇒ x
no no y ⇒ b⇒ a⇒ x

Figure 5.3: A cycle consisting of four accesses in two threads. The solid edges correspond to order
in the execution stream of each thread, and the dashed edges are conflicts. Of the four possible
results of thread 1 visible to thread 2, the second is illegal since it does not correspond to an overall
execution sequence in which operations are not reordered within a thread.

A simpler memory model, sequential consistency, is the most intuitive for the programmer.
The sequential consistency model states that a parallel execution must behave as if it were an
interleaving of the serial executions by individual threads, with each individual execution sequence
preserving the program order [61]. Figure 5.3 shows a simple set of operations on two threads, and
for each possible execution result, whether or not a sequential interleaving exists.

An easy way to enforce sequential consistency is to insert memory barriers after each access
to a memory location that may be shared. A memory barrier or fence forces all previous memory
operations to complete before execution can proceed, preventing optimizations such as prefetching
and code motion and resulting in an unacceptable performance penalty. Various techniques, such
as cycle detection [91, 60], have been proposed to minimize the number of barriers, or delay set,
required to enforce sequential consistency.

Computing the minimal delay set for an arbitrary parallel program is an intractable NP-hard
problem [91, 60]. Krishnamurthy and Yelick proposed a polynomial time algorithm based on cycle
detection for analyzing SPMD programs [60] such as Titanium. The analysis uses a graph where
the nodes represent shared memory accesses. There are two types of edges in the graph: program
edges and conflict edges. Program edges reflect the program order: there is a directed program
edge from u to v if u can execute before v. Conflict edges are undirected edges between accesses
that conflict: there is a conflict edge between u and v if u and v can access the same memory
location and at least one of them is a write.

The goal of cycle detection is to check each program edge to see if it needs a fence to enforce
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its order. Given the program edge (u, v), if there is no local dependency between u and v, v could
execute before u. If this reordering is observable by another thread, then sequential consistency is
violated. In that case, a fence must be inserted between u and v to ensure that u always executes
before v. Figure 5.3 gives one example of this. There is no local dependency on T1, but if the two
writes on T1 were reordered, then the following execution order would be possible: x ⇒ y ⇒
b ⇒ a. This results in (y, b) reading the values (1, 0), which means that the reordering on T1 is
observable on T2. A fence must be placed between a and x to prevent such reordering.

Kirshnamurthy and Yelick [60] showed that given a program edge (u, v), if there is a path from
v to u where the first and last edge are conflict edges, and the intermediate edges are program
edges, then the program edge (u, v) belongs to the minimal delay set and a fence must be placed
between u and v to prevent reordering. The path together with the program edge (u, v) forms a
critical cycle.

Concurrency information can be used to reduce the set of conflict edges for a program. Suppose
two memory accesses a and b conflict. We show that if a and b can never run concurrently within
the relaxed memory model, it is possible to remove the resulting conflict edge since it can never
take part in a cycle that violates sequential consistency.
Theorem 5.4.1. Let a and b be two memory accesses in a program, and C a cycle containing
the conflict edge (a,b). If a and b cannot run concurrently, then reordering a with another access
does not violate sequential consistency with respect to the accesses in C in any execution of the
program, as long as accesses are not moved across synchronization points.

Proof. We prove this for a cycle consisting of four accesses in two threads where a is the first
access in thread 1 and b is the second access in thread 2, as in figure 5.3 (the proof can be gener-
alized to arbitrary cycles). Let x and y be the other two conflicting accesses in C, in thread 1 and
2 respectively. Consider an arbitrary execution in which the accesses in C occur. Since a and b
cannot run concurrently, either a must complete before b or b must complete before a.
Case 1: a occurs before b. Sequential consistency can only be violated if y sees the effect of x,
but b does not see the effect of a. In all other cases, execution corresponds to a valid sequentially
consistent ordering, as shown in the table in figure 5.3. But since a occurs before b, b always sees
the effect of a, so sequential consistency is preserved regardless of the order of a and x.
Case 2: b occurs before a. In order to enforce that b occur before a, there must be a synchronization
point between b and a in the execution stream of each thread. Since accesses aren’t moved across
such points, y must occur before it and x must occur after it. This means that y must complete
before x and therefore does not see its effect. Since y does not see the effect of x and b does not
see the effect of a, the execution is sequentially consistent independent of the order of a and x.

Since a conflict edge in which the two accesses may be concurrent is by definition a race
condition, the above proof demonstrates an important property: race-free code is sequentially
consistent. Programmers rarely write code that intentionally has race conditions. One exception is
spin locks to protect shared data, such as the following, which results in the critical cycle shown in
Figure 5.3:

1 / / t h r e a d 0 code



CHAPTER 5. ANALYSIS BACKGROUND 44

2 data = 1 ;
3 flag = 1 ;
4

5 / / t h r e a d 1 code
6 while (flag == 0) ;
7 print (data ) ;

Such code may execute incorrectly in a memory model that is not sequentially consistent. It also
contains two races in the context of a relaxed memory model: the write to data on line 2 and read
from it on line 7, and the write to flag on line 3 and read from it on line 6. In both cases, the
writes and reads occur with no intervening synchronization operation, resulting in race conditions.
These races correspond to the two conflict edges in the resulting critical cycle. Thus, enforcement
of sequential consistency is tied directly to race detection.

5.5 Analysis over Teams
With the addition of teams, collective operations need not be global. As a result, widening abstract
locations to the maximum width in pointer analysis may be overly imprecise. For example, a
broadcast over a lower level in Ti.defaultTeam(), the team that matches the machine hierarchy,
should produce an abstract location with width smaller than d. Thus, team-awareness can improve
locality analysis.

In addition to width with respect to the machine hierarchy, it would be useful in pointer analysis
to compute widths with respect to arbitrary team hierarchies. Similarly, concurrency analysis can
compute team-level concurrency information in addition to the global information it computes
now. As an example, consider the following code:

1 Foo y ;
2 teamsplit (t1 ) {
3 Foo x = new Foo ( ) ;
4 y = broadcast x from 0 ;
5 x .f = 4 ;
6 }
7 . . .
8 teamsplit (t2 ) {
9 Ti .barrier ( ) ;

10 return y .f ;
11 }

If t1 and t2 reference the same concrete team at runtime, say Ta, then the write on line 5 does
not conflict with the read on line 10. This is due to the fact that the threads that read the location
y.f and the thread that writes to it belong to the same child team of Ta, so x and y are aliased
across the child team of Ta but not globally. However, all threads in that child team synchronize
on the barrier in line 9, so the two accesses are non-concurrent in the child team of Ta, and no
race condition exists. On the other hand, if t1 and t2 do not refer to the same team, then a race
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condition may result. Thus, knowledge of the set of possible active teams at each program location
is essential to precise pointer and concurrency analysis.

Team information may be computed by a static analysis, as we propose in a companion re-
port [48]. Alternatively, we can rely on user annotations in order to provide precise and accurate
information about the teams in a program and their usage.

5.5.1 The Team Lattice
Once the set of teams in a program and their relationship to each other is determined, whether
through analysis or annotations, a team lattice is constructed to represent this information. This
lattice is used directly in hierarchical pointer analysis (§6) and indirectly in concurrency analysis
(§7) to construct the lattices required there.

The team lattice has a single element for each unique team-hierarchy level in the program; if
two levels in two team hierarchies are equal, they share a lattice element, even if their children
differ. Edges in the team lattice represent parent-child relationships between teams. A new lattice
element is added to represent thread-local operations, and an edge is added from that element to
each team that has no children. A minimal ⊥ element represents null operations, and an edge is
added from it to thread local. Finally, the maximal element > corresponds to the global team.
Figure 5.4 shows an example of a team lattice.

Each path from the top of the lattice to thread local represents a distinct team hierarchy. The
height of the lattice is the maximum height of all team hierarchies plus one, and we use dlat to
denote this value.

Finally, each team t has an associated locality, which corresponds to the lowest level in the
machine hierarchy that contains all threads in t: the locality of a team is the minimum pointer
width that can reference all data located on a team’s threads. This is not necessarily the lowest
element of the machine team that is an ancestor of t, as the example below demonstrates.

5.5.2 Example
As a concrete example of a team lattice and team usage information, consider the following code
that executes in the context of the global team:

1 Team a = Ti .defaultTeam ( ) ;
2 Team b = new Team ( ) ;
3 Team c ;
4 b .splitTeam ( 2 ) ;
5 teamsplit (b ) {
6 b .myChildTeam ( ) .splitTeamSharedMem (Ti .thisProc ( ) ) ;
7 c = new Team ( ) ;
8 c .splitTeam ( 2 ) ;
9 }

There are three team hierarchies in this code: the default, machine hierarchy (tm), the hierarchy
created on line 2 and split at lines 4 and 6 (t2), and the hierarchy created at line 7 and split at line
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= none

Figure 5.4: Example of a team lattice.

8 (t7). Then a references the global team, the top level in the machine hierarchy tm(0). The team
referenced by b is t2(0), the top level in team hierarchy t2, which is equal to tm(0). Finally, c
references the team t7(1), which is equal to t2(1). Since c is split in line 8, the team hierarchy t7
has an additional level t7(2). Finally, all expressions in lines 1-5 are in the context of team tm(0),
and those in lines 6-8 are in the context of team t2(1).

The root of each of the three team hierarchies is the global team, and the leaves are individual
threads. Including these two levels, the machine team has three levels, with the second level
(denoted by tm(1) using zero-indexing) local, meaning that all threads in a given team at that
level share memory. Team t2 has four levels, with the third level (t2(2)) local, since it was
created using a call to splitTeamSharedMem(). Team t7 also has four levels and is equal to t2 at
the second level (i.e. t2(1) = t7(1)). The resulting team lattice is illustrated in Figure 5.4.
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Chapter 6

Hierarchical Pointer Analysis

As discussed in §5.2, information about the pointers in a program is useful for many analyses
and optimizations. In this chapter, we define a hierarchical pointer analysis that determines which
allocation sites produce data that can be referenced by each variable in the program. The analysis
also infers the possible threads on which the data may be located, using the team structure of
the program to compute and report results. The pointer analysis we describe here is based on
Andersen’s analysis [6] and is an extension of a previous analysis that analyzes only the machine
hierarchy [54, 49].

We begin by providing background on the analysis and defining a simple language, Ti, that
abstracts away the irrelevant details of the Titanium language1. We then describe the abstract inter-
pretation rules for a pointer analysis over Ti and prove correctness for the most complicated rule.
Finally, we discuss how the analysis can be modified for locality inference as well as implementa-
tion of the analysis in Titanium.

6.1 Language
We start by defining a modified version of Ti [54], a basic SPMD language based on Titanium.
Figure 6.1 illustrates the syntax of Ti. References have a width corresponding to the potential
location of referenced data in the machine hierarchy. This width can range from 1 to the depth
of the hierarchy d. Since Ti supports an arbitrary machine hierarchy, it follows the hierarchical
partitioned global address space (HPGAS) memory model.

In addition to the machine hierarchy, we assume that there is a statically known set of team
hierarchies arranged in a lattice, as described in §5.5.1. Elements in this lattice are named by a
team hierarchy t and a level n.

The complete Ti language is as follows. Types can be integers or reference types. As mentioned
above, the latter are parameterized by a width n in the range [1, d]. Expressions in Ti consist of the
following:

1Though Ti follows the recursive single-program, multiple data (RSPMD) model of parallelism, the analysis can
be extended to other models of parallelism. We do not do so, however, in this work.
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• integer literals (n)

• variables (x). We assume a fixed set of variables of predefined type. We also assume that
variables are private to each machine2.

• reference allocations (newl τ ). The expression newl τ allocates a memory cell of type τ and
returns a reference to the cell. Each allocation site has a unique label l.

• dereferencing (∗e)

• type conversions (convert(e, t, n)). This asserts that the given expression evaluates to a
reference located on a machine that is in the same subteam as the executing machine in the
team hierarchy and level specified by t and n.

• communication (transmit e1 from e2 in (t, n)). The expression transmit e1 from e2 in
(t, n) evaluates e1 on machine e2 in the subteam specified by the hierarchy t and level n and
transmits the result to all other machines in the subteam3.

• sequencing (e1; e2)

• assignment to variables (x := e)

• assignment through references (e1 ← e2). In e1 ← e2, e2 is written into the location referred
to by e1.

For simplicity, Ti does not have conditional statements. Since the analysis is flow-insensitive,
conditionals are not essential to it.

Only the transmit and convert expressions differ from the previous version of Ti. The
transmit expression now takes in a statically known team hierarchy as well as an integer de-
noting the level in the given team hierarchy over which the expression executes, with 0 denoting
the top level. As such, this new version of Ti has an RSPMD model of parallelism. The convert
expression also now takes in a team hierarchy and level. This level argument matches that of
transmit in that 0 is the top level, unlike in the convert expression of the original Ti lan-
guage.

6.1.1 Type System
The type checking rules for Ti are summarized in Figure 6.3. The rules for integer literals, vari-
ables, sequencing, and variable assignments are straightforward.

As in the approach of Liblit and Aiken, [65], we define an expand function and a robust
predicate to facilitate type checking. The expand function widens a type when necessary, and the
robust predicate determines when it is legal to assign to a reference. These functions are shown

2Throughout this chapter, we will use machine interchangeably with thread.
3Though a transmit operation is equivalent to a broadcast in Titanium, we use transmit instead of

broadcast as it is a modification of the transmit expression described by Liblit and Aiken [65].
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n ::= integer literals
x ::= variables
t ::= team hierarchies
τ ::= int | refn τ (types)
e ::= n | x | newl τ | ∗ e | convert(e, t, n)

| transmit e1 from e2 in (t, n)

| e1; e2 | x := e | e1 ← e2 (expressions)

Figure 6.1: The syntax of the Ti language.

expand(τ, n) ≡

{
refmax(n′,n) τ

′ if τ = refn′τ
′

τ otherwise

robust(τ, n) ≡

{
false if τ = refn′τ

′ ∧ n′ < n

true otherwise

Figure 6.2: Type manipulating functions.

in Figure 6.2. Two other functions are useful. The function lat(t, n) converts a team hierarchy
and level into the corresponding element in the team lattice. The function locality(h) returns the
locality of a given team-lattice element, resulting in a value in the range [1, d] corresponding to a
width in the machine hierarchy.

The allocation expression newl τ produces a reference type ref1 τ of width 1, since the al-
located memory is guaranteed to be on the machine that is performing the allocation. Pointer
dereferencing is more problematic, however. Consider the situation in Figure 6.4, where x on ma-
chine 0 refers to a location on machine 0 that refers to a location on machine 1. This implies that
x has type ref1 ref2 τ . The result of ∗x should be a reference to the location on machine 1, so it
must have type ref2 τ . In general, a dereference of a value of type refa refb τ produces a value
of type refmax(a,b) τ .

The convert expression asserts that the given expression evaluates to a location on a machine
in the same subteam in the given team hierarchy and level as the executing machine. Thus implies
that the distance between the two machines is at most one less than the locality of the specified
subteam. (As described in §5, distance is zero-indexed but locality is one-indexed.) A programmer
can use convert expressions to inform the compiler that the reference is to data residing on a
machine closer than the original width, such as after a dynamic check that this is the case. The
resulting type is the same as the input expression, but with a new width matching the locality of
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Γ ` n : int Γ ` newl τ : ref1 τ

Γ(x) = τ

Γ ` x : τ

Γ ` e : refn τ

Γ ` ∗ e : expand(τ, n)

Γ ` e : refn τ

Γ ` convert(e, t, n′) : reflocality(lat(t,n′)) τ

Γ ` e1 : τ Γ ` e2 : int

Γ ` transmit e1 from e2 in (t, n) : expand(τ, locality(lat(t, n)))

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` e1; e2 : τ2

Γ ` e : τ Γ(x) = τ

Γ ` x := e : τ

Γ ` e1 : refn τ Γ ` e2 : τ robust(τ, n)

Γ ` e1 ← e2 : τ

Γ ` e : refn τ n < n′

Γ ` e : refn′ τ

Figure 6.3: Type checking rules.

Machine 0 Machine 1

x: ref1 ref2

*x: ref2

2

2

1

ref2

Figure 6.4: Dereferences may require width
expansion. The arrow labels correspond to
pointer widths.

Machine 0 Machine 1

y: ref2

z: ref1

2

1
12

ref1

Figure 6.5: The assignment y ← z is forbid-
den, since the location referred to by y can
only hold pointers of width 1 but requires a
pointer of width 2 to refer to z.
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the given subteam.
In the transmit expression, if the value to be communicated is an integer, then the resulting

type is still an integer. If the value is a reference, however, the width of the result must be set
to the maximum of its original width and the locality of the subteam over which the transmit
operation executes.

The typing rule for the assignment through reference expression is also nontrivial. Consider
the case where y has type ref2 ref1 τ , as in Figure 6.5. Should it be possible to assign to y with
a value of type ref1 τ? Such a value must be on machine 0, but the location referred to by x is on
machine 1. Since that location holds a value of type ref1 τ , it must refer to a location on machine
1. Thus, the assignment should be forbidden. In general, an assignment to a reference of type
refa refb τ should only be allowed if a ≤ b.

There is also a subtyping rule that allows for implicit widening of a reference. Subsumption is
only allowed for the top-level width of a reference.

6.1.2 Operational Semantics
We now describe the operational semantics of Ti. First, we define the following semantic domains
and naming conventions for their elements:

M (the set of machines)

H (the set of team-lattice elements)

A (the set of local addresses)

Id (the set of identifiers)

N (the set of integer literals)

V ar = M × Id (the set of variables)

L (the set of allocation-site labels)

T (the set of all team hierarchies)

U (the set of all types)

G = L×M ×A (the set of global addresses)

V = N ∪G (the set of values)

Store = (G ∪ V ar)→ V (the contents of memory)

Exp (the set of all expressions)

m ∈M (a machine)

h ∈ H (a team-lattice element)

a ∈ A (a local address)

n ∈ N (an integer)

l ∈ L (a label)

t ∈ T (a team hierarchy)

τ ∈ U (a type)

g = (l,m, a) ∈ G (a global address)

v ∈ V (a value)

σ ∈ Store (a memory state)

e ∈ Exp (an expression)

Judgments in our operational semantics have the form 〈e,m, σ〉 ⇓ 〈v, σ′〉, which means that
expression e executed on machine m in a global state σ evaluates to the value v and results in the
new state σ′. We use the notation σ[g := v] to denote the function λx. if x = g then v else σ(x).

Only the rules for convert and transmit change from the previous version of Ti. However,
we provide all the rules for completeness. The rules for integer and variable expressions are trivial.

〈n,m, σ〉 ⇓ 〈n, σ〉 〈x,m, σ〉 ⇓ 〈σ(x), σ〉
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For allocations, we introduce a special null value to represent uninitialized pointers. The result of
an allocation is an address on the local machine that is guaranteed to not already be in use.

〈newl τ,m, σ〉 ⇓ 〈(l,m, a), σ[(l,m, a) := null]〉 (a is fresh on m)

The rule for dereferencing is simple, except that it is illegal to dereference a null pointer.

〈e,m, σ〉 ⇓ 〈g, σ′〉 g 6= null

〈∗e,m, σ〉 ⇓ 〈σ′(g), σ′〉

The rule for variable assignment is also simple.

〈e,m, σ〉 ⇓ 〈v, σ′〉
〈x := e,m, σ〉 ⇓ 〈v, σ′[x := v]〉

The rule for assignment through a reference is the combination of a dereference and a normal
assignment.

〈e1,m, σ〉 ⇓ 〈g, σ1〉 〈e2,m, σ1〉 ⇓ 〈v, σ2〉 g 6= null

〈e1 ← e2,m, σ〉 ⇓ 〈v, σ2[g := v]〉

The rule for sequencing is as expected.

〈e1,m, σ〉 ⇓ 〈v1, σ1〉 〈e2,m, σ1〉 ⇓ 〈v2, σ2〉
〈e1; e2,m, σ〉 ⇓ 〈v2, σ2〉

The convert expression is now generalized to assert that the given expression references a loca-
tion on a machine that is in the same subteam as the executing machine at the given level of the
given team hierarchy. (Providing the machine hierarchy and inverting the level argument results
in the old convert expression.) We make use of the teamc function, which takes in a machine
m, a team hierarchy t, and an integer level n and returns the set of machines that are in the same
subteam as m at level n in t.

〈e,m, σ〉 ⇓ 〈g = (l,m′, a), σ′〉 m′ ∈ teamc(m, t, n)

〈convert(e, t, n),m, σ〉 ⇓ 〈g, σ′〉

For the transmit operation, the expression is evaluated on the given machine in the context
of the given team. The function size takes in a machine m, a team hierarchy t, and an integer
level n. It returns the size of m’s subteam in t at level n. The function mach takes in a team-
relative machine ID i in addition to those arguments. It returns the machine assigned the ID i in
the specified subteam.

〈e2,m, σ〉 ⇓ 〈i, σ2〉 i ∈ [0, size(m, t, n)) 〈e1,mach(m, t, n, i), σ2〉 ⇓ 〈v, σ1〉
〈transmit e1 from e2 in (t, n),m, σ〉 ⇓ 〈v, σ1〉
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We now turn our attention to a pointer analysis for the new version of the Ti language. So that
we can ignore any issues of concurrency and also for efficiency, our analysis is flow-insensitive.
We only define the analysis on the single machine m – since Ti is SPMD, the results are the same
for all machines.

6.2 Concrete Domain
Since our analysis is flow-insensitive, we need not determine the concrete state at each point in a
program. Instead, we define the concrete state over the whole program. Since we are doing pointer
analysis, we are only interested in reference values, and since a location can contain different values
over the lifetime of the program, we must compute the set of all possible values for each memory
location and variable on machine m. The concrete state thus maps each memory location and
variable to a set of memory locations, and it is a member of the domain CS = (G+ Id)→ P(G).

6.3 Abstract Domain
For our abstract semantics, we define an abstract location to correspond to the abstraction of a
concrete memory location. Abstract locations are defined relative to a particular machine m. An
abstract location relative to machine m is a member of the domain Am = L ×H – it is identified
by both an allocation site and a team-lattice element. An element a1 of Am is subsumed by another
element a2 if a1 and a2 have the same allocation site, and the team of a2 subsumes the team of a1.
The elements of Am are thus ordered by the following relation:

(l, h1) v (l, h2)⇐⇒ h1 v h2

The ordering thus has height dlat, the height of the team lattice.
We define a points-to set S as a mapping between allocation sites and team-lattice elements,

S : L → H . We use R to denote the set of all points-to sets, with |R| = |H||L|, and define the
following ordering on R, for all S1, S2 ∈ R:

S1 v S2 ⇐⇒ ∀l ∈ L. S1(l) v S2(l)

The points-to set S1 is subsumed by S2 if for every allocation site, its team element in S1 is
subsumed by its team element in S2. This ordering results in a lattice with the following minimal
and maximal elements:

∀l ∈ L. S⊥(l) = ⊥
∀l ∈ L. S>(l) = >

The maximal chain between S⊥ and S> is derived by increasing the team element for one allocation
site at a time along the maximal chain in H , so the lattice has height dlat · |L|+ 1.

We define a teama function, similar to teamc, that takes in a machine m and team lattice
element h and returns the set of machines in the same team as m in the team hierarchy and level
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denoted by h. In particular, teama(m,>) =M , teama(m,⊥) = ∅, and teama(m, thread local) =
{m} for any machine m.

We now define a Galois connection between P(G) and R as follows:

γm(S) =
{
(l,m′, a)

∣∣m′ ∈ teama(m,S(l))
}

αm(C) = u
{
S
∣∣ C v γm(S)

}
The concretization of an abstract location (l, n) with respect to machine m is the set of all concrete
locations with the same allocation site and located on machines that are in the same team as m in
the team hierarchy and level specified by S(l). The abstraction with respect to m of a concrete
location (l,m′, a) is an abstract location with the same allocation site and the team-lattice element
that is the join of all elements for which m and m′ are in the same subteam.

Finally, we abstract the concrete domain CS to the following abstract domain, which maps
abstract locations and variables to points-to sets of abstract locations:

AS = (Am + Id)→ R

An element σA of AS is subsumed by σ′A if the points-to set of each abstract location and variable
in σA is subsumed by the corresponding set in σ′A. The elements of AS are therefore ordered as
follows:

σA v σ′A ⇐⇒ ∀x ∈ (Am + Id). σA(x) v σ′A(x)

The resulting lattice has height in O(dlat · |L| · (|Am| + |Id|)) = O(dlat · |L| · (dlat · |L| + |Id|)).
Since the number of allocation sites and identifiers is limited by the size of the input program P ,
the height is in O(d2lat · |P |2).

6.4 Abstract Semantics
For each expression in Ti, we provide inference rules for how the expression updates the ab-
stract state σA. The judgments are of the form 〈e, σA〉 ⇓ 〈S, σ′A〉, which means that expression
e in abstract state σA can refer to the abstract locations in the points-to set S and results in the
modified abstract state σ′A. We use the notation σ[g := v] to denote the function λx. if x =
g then v else σ(x). Most of the rules are derived directly from the operational semantics of the
language.

The rules for integer, team, and variable expressions are straightforward. None of them updates
the abstract state, and the latter returns the points-to set of the variable.

〈n, σA〉 ⇓ 〈S⊥, σA〉 〈t, σA〉 ⇓ 〈S⊥, σA〉 〈x, σA〉 ⇓ 〈σA(x), σA〉

An allocation results in a thread local reference. It makes use of the only function, which takes in
an allocation site l and a team-lattice element h and returns a points-to set Q such that
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∀k ∈ L. (k = l =⇒ Q(k) = h) ∧ (k 6= l =⇒ Q(k) = ⊥).

〈newl τ, σA〉 ⇓ 〈only(l, thread local), σA〉

The rule for dereferencing is similar to the operational semantics rule, except that all source abstract
locations are simultaneously dereferenced.

〈e, σA〉 ⇓ 〈S, σ′A〉
〈∗e, σA〉 ⇓ 〈

⊔
l∈L σ

′
A(S(l)), σ

′
A〉

The rule for sequencing is also analogous to its operational semantics rule.

〈e1, σA〉 ⇓ 〈S1, σ
′
A〉 〈e2, σ′A〉 ⇓ 〈S2, σ

′′
A〉

〈e1; e2, σA〉 ⇓ 〈S2, σ
′′
A〉

The rule for variable assignment merely updates the points-to set of the target variable with the
source abstract locations.

〈e, σA〉 ⇓ 〈S, σ′A〉
〈x := e, σA〉 ⇓ 〈S, σ′A[x := σ′A(x) t S]〉

The convert expression can only succeed if the result is located on a machine within the spec-
ified subteam, so it narrows all abstract locations to be within that subteam. It uses the narrow
function, which takes in a points-to set S, a team hierarchy t, and a level n and returns a points-to
set Q such that

∀l ∈ L. Q(l) =

{
lat(t, n) if S(l) 6v lat(t, n)

S(l) if S(l) v lat(t, n),

where lat(t, n) is the team-lattice element corresponding to level n in t.

〈e, σA〉 ⇓ 〈S, σ′A〉
〈convert(e, t, n), σA〉 ⇓ 〈narrow(S, t, n), σ′A〉

The SPMD model of parallelism in Ti implies that the source expression of the transmit op-
eration evaluates to abstract locations with the same labels on both the source and destination
machines. The operation occurs within the context of the given team t and level n, so the source
of the transmit is a machine m′ in the same subteam as the executing machine m. Now let
S be the source points-to set, which is the same on all machines since Ti is SPMD. Suppose
S(l) = lat(t′, n′) for some allocation site l. Then on machine m′, the referenced location must be
on a machine m′′ in the same subteam as m′ at level n′ in team t′. Machine m is not necessarily
in that same subteam, but it is in the same subteam as m′′ in the the least common ancestor of t(n)
and t′(n′). Thus, from the point of view of m, the source abstract location must be widened to the
team-lattice element corresponding to this least upper bound. The widen function does so, taking
in a points-to set S, a team hierarchy t, and a level n and returning a points-to set Q such that
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0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

6, 7, 8, 9, 10, 110, 1, 2, 3, 4, 5

7. 9, 116, 8, 101, 3, 50, 2, 4

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

6, 7, 8, 9, 10, 11

10, 118, 96, 7

0, 1, 2, 3, 4, 5

4, 52, 30, 1

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

5, 114, 103, 92, 81, 70, 6

tm

t2

t7

Figure 6.6: Sample team hierarchies.

∀l ∈ L. Q(l) =

{
S(l) t lat(t, n) if S(l) 6= ⊥
⊥ if S(l) = ⊥.

The rule for transmit then is

〈e2, σA〉 ⇓ 〈S2, σ
′
A〉 〈e1, σ′A〉 ⇓ 〈S1, σ

′′
A〉

〈transmit e1 from e2 in (t, n), σA〉 ⇓ 〈widen(S1, t, n), σ
′′
A〉

The rule for assignment through reference is the most interesting. Consider the team lattice in
Figure 5.4. Suppose that the corresponding teams are as in Figure 6.6. (Though this set of teams
would require different code to construct than that in §5.5.1, the resulting team lattice is the same.
However, locality differs for some of the teams.) Now suppose an abstract location a2 = (l2, t7(2))
is assigned into an abstract location a1 = (l1, t2(2)) on machine 0. The abstract location a1 can
correspond to a concrete location on machine 1, since machines 0 and 1 are in the same subteam
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in t2(2), and a2 can correspond to machine 2, since machines 0 and 2 are in the same subteam in
t7(2). This implies that a concrete location corresponding to (l1, t2(2)), relative to machine 0, can
point to a concrete location corresponding to (l2, t7(t)) relative to 0.

Now the same assignment occurs on machine 1, since Ti is SPMD. Relative to machine 1, a1
can correspond to a concrete location on machine 1 and a2 can correspond to a concrete location on
machine 5. This implies that a concrete location corresponding to (l1, t2(2)), relative to machine 0,
can point to a concrete location corresponding to (l2, t2(1)), relative to 0, since machines 0 and 5
aren’t in the same subteam below t2(1). Thus, in order to account for this assignment on machine
1, it is (l2, t2(1)) that must be added to the points-to set of (l1, t2(2)).

The same assignment occurs on the rest of the machines, and we must update the points-to sets
of (l1, h) for all h in order to reflect the possible changes to the concrete state. As we will show
below, whenever an assignment occurs from (l2, h2) to (l1, h1), we must update the points-to set of
each (l1, h3) to include (l2, h1 th2 th3). The update rule for assignment through reference is then

〈e1, σA〉 ⇓ 〈S1, σ
′
A〉 〈e2, σ′A〉 ⇓ 〈S2, σ

′′
A〉

〈e1 ← e2, σA〉 ⇓ 〈S2, update(σ
′′
A, S1, S2)〉

,

with update defined as

update(σ, S1, S2) =

λ(k) : Am + Id .

if (k ∈ Id ∨ S1(label(k)) = ⊥) then σ(k)

else σ(k) t

 ⊔
S2(l2)6=⊥

only(l2, S1(label(k)) t S2(l2) t team(k))


and the label and team functions returning the corresponding components of an input abstract
location.

6.5 Soundness
An abstract interpretation is sound if the abstraction and concretization functions are monotonic
and form a Galois connection, and the abstract inference rules for each operation is correct. The
former condition was shown in §6.3.

Most of the abstract inference rules are derived directly from the operational semantics, so their
correctness is obvious. The rule for assignment through a reference, however, is nontrivial, so we
prove its correctness here.

Let ami represent the abstract location ai with respect to machine m. Let hm represent a team-
lattice element h with respect to m.

Consider an assignment e1 ← e2. Let m be the reference machine for the analysis. Without
loss of generality, assume that e1 evaluates to the lone abstract location am1 = (l1, h

m
1 ), and that e2

evaluates to am2 = (l2, h
m
2 ). Consider the execution of this assignment on the following machines:
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• On machines m′ such that m and m′ are in the same subteam in the team hierarchy and level
represented by hm1 . This implies that abstract locations with team element hm1 are the same
with respect to both m and m′, i.e. am′1 = am1 . Thus, the assignment can target any concrete
location corresponding to am1 .

Now suppose that hm2 < hm1 . Then the am′2 are not equivalent for all machines m′. However,
the am′2 for a particular m′ contains the concrete locations (l2,m′, a) for any a. Considering
the assignment on all machinesm′, the concrete locations in am1 can receive any of the source
concrete locations (l2,m

′, a) for all m′ and a. This set of source locations corresponds
exactly to the abstract location am2′ = (l2, h

m
1 ).

Suppose instead that hm2 w hm1 . Then the machines m′ all agree on the set am′2 = am2 . Thus,
regardless of which machine the assignment is executed on, the source locations correspond
exactly to am2 .

Finally, suppose that hm2 6< hm1 and hm2 6w hm1 . Let hm2′′ = hm1 t hm2 . Then the machines m′

all agree on the set am′2′′ = am2′′ = (l2, h
m
2′′), since hm1 v hm2′′ . Furthermore, since hm′2 v hm

′

2′′ , it
must be that am′2 v am

′

2′′ for any machine m′. Since all machines m′ agree on am′2′′ , it contains
all source locations on the machines m′. (It may also contain concrete locations that cannot
be a source location on any machine m′. This does not affect soundness of the analysis,
though it may result in loss of precision.)

In any case, any of the concrete locations corresponding to am1 can now point to concrete
locations corresponding to am2∗ = (l2, h

m
1 t hm2 ). To capture this in the abstract inference, it

is sufficient to add am2∗ to the points-to set of am1 . For consistency, am2∗ should also be added
to the points-to set of any abstract location am1∗ v am1 , since any of the concrete locations
corresponding to am1∗ can point to concrete locations corresponding to am2∗ .

Thus, it is sufficient to add the abstract location am2∗ = (l2, h
m
1 t hm2 ) to the points-to set of

any am1∗ = (l1, h
m
1∗) such that hm1∗ v hm1 .

• On a machine m′, where m and m′ are not in the same subteam in the team hierarchy and
level represented by hm1 . The set of concrete locations corresponding to am′1 all reside on
machines in the same subteam as m′ in that hierarchy and level. Let hm1′ correspond to the
lowest level in that hierarchy in which m and m′ are in the same subteam. Then am′1′ =
(l1, h

m′

1′ ) = am1′ , and since hm′1 < hm
′

1′ , it is the case that am′1 < am
′

1′ = am1′ , so that all concrete
destination locations on machine m′ are contained in am1′ .

Now suppose hm2 < hm1′ . Then all the concrete locations corresponding to am′2 reside on
machines in the same subteam as m in the hierarchy and level represented by hm1′ , so that
am
′

2 v am2′ , where am2′ = (l2, h
m
1′ ). Thus, the source locations can be soundly approximated

by am2′ .

Suppose instead that hm2 w hm1′ . Then m and m′ agree on am′2 = am2 , so the source locations
correspond to am2 .
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Finally, suppose that hm2 6< hm1′ and hm2 6w hm1′ . Let hm2′′ = hm1′ t hm2 . Then machines m and
m′ agree on the set am′2′′ = am2′′ = (l2, h

m
2′′), since hm1′ v hm2′′ . Furthermore, since hm′2 v hm

′

2′′ ,
it is the case that am′2 v am

′

2′′ = am2′′ , so that the latter contains all source locations on m′.

In any case, some of the concrete locations corresponding to am1′ can now point to some of
the concrete locations corresponding to am2′′ = (l2, h

m
1′ t hm2 ). Soundness can be maintained,

though precision lost, if the analysis assumes that any concrete location corresponding to am1′
can point to any concrete location corresponding to am2′′ . Thus, am2′′ should be added to the
points-to set of am1′ .

Considering all machines m′ such that m and m′ are not in the same subteam represented
by hm1 , none of the destination locations on any machine m′ may reside on machines in the
same subteam as m in hm1 . Thus, no abstract locations am1∗ v am1 need to be updated. On the
other hand, for any abstract location am1∗ = (l1, h

m
1∗) = am1 , there is at least one machine m′

for which hm1∗ is the lowest level in its corresponding hierarchy for which m and m′ are in
the same subteam. Thus, the points-to set of each such abstract location am1∗ must be updated
to include am2∗ = (l2, h

m
1∗ t hm2 ). Lastly, for any abstract location am1∗ such that am1∗ 6v am1 and

am1∗ 6= am1 , all concrete locations in am1∗ are contained in am1∗∗ = (l1, h
m
1∗ t hm1 ). The latter

points to am2∗∗ = (l2, h
m
1∗ t hm1 t hm2 ), so it is sound to update the points-to set of am1∗ with

am2∗∗ .

Combining the above, it is sufficient to add the abstract location am2∗∗ = (l2, h
m
1∗ t hm1 t hm2 )

to the abstract locations am1∗ = (l1, h
m
1∗) such that hm1∗ 6v hm1 .

Summarizing over all possibilities, we obtain the rule that the abstract location am2∗∗ = (l2, h
m
1∗ t

hm1 t hm2 ) is to be added to the points-to set of any am1∗ = (l1, h
m
1∗). This corresponds exactly to the

update rule provided in §6.4.

6.6 Algorithm
The set of inference rules, instantiated over all the expressions in a program and applied in some
arbitrary order4, composes a function F : AS → AS. Only the two assignment rules affect the
input state σA, and in both rules, the output consists of a least-upper-bound operation involving the
input state. As a result, F is a monotonically increasing function, and the least fixed point of F ,
F0 = tnF n(λx. ∅), is the analysis result.

The function F has a rule for each program expression, so it takes time in O(|P |) to apply it5,
where P is the input program. Since the lattice over AS has height in O(d2lat · |P |2), it takes time
in O(d2lat · |P |3) to compute the fixed point of F .

4Since the analysis is flow-insensitive, the order of application is not important.
5We ignore the cost of the join operations here. In practice, representations of points-to sets tend to be small, so

the cost of joining them can be neglected.
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6.7 Locality Inference
One of the important applications of pointer analysis is inferring the locality of each of the variables
in a program. A variable’s locality corresponds to the lowest level in the machine hierarchy in
which all concrete locations that the variable may point to reside on threads in the same subteam
as the source thread. Since the original pointer analysis operated solely on the machine hierarchy,
it was straightforward to determine the locality of a variable as the maximum level of any element
in the variable’s points-to set. In the new analysis, however, determining a variable’s locality is
more complicated.

Assuming the team lattice in Figure 5.4, consider a variable xwith the points-to set only(l, tm(1)).
Suppose the assignment x := e occurs where e has the points-to set only(l, t2(2)). As discussed in
§5.5.1, tm(1) and t2(2) are local, meaning that all threads within those subteams share physical
memory. According to the abstract interpretation rule in §6.4, the new points-to set for x will be

only(l, tm(1)) t only(l, t2(2)) = only(l, global),

which is not local. The fact that the concrete state of x only includes pointers to local locations
is no longer reflected in its abstract state.

To avoid this loss of information, we add a new entry S(all) to every points-to set S. The
value of S(all) is always a machine hierarchy element corresponding to the lowest level in the
machine hierarchy in which all concrete locations referenced by the points-to set must reside in the
same subteam as the source thread. To facilitate computation of S(all), every team hierarchy and
level must have an associate locality, as discussed in §5.5.1. The new ordering on the set R of all
points-to sets is

S1 v S2 ⇐⇒ ∀l ∈ L. S1(l) v S2(l) ∧ S1(all) v S2(all).

We modify the abstract semantics in §6.4 to compute the value of S(all) for each points-to
set S. We make use of the locality function that takes in a team-lattice element h and returns the
locality of the corresponding subteam. Then the following modifications are made to the functions
used in the abstract interpretation.

• only(l, h) returns a points-to set S ′ such that

S ′(all) = locality(h).

• narrow(S, t, n) returns a points-to set S ′ such that

S ′(all) = S(all) u locality(lat(t, n)).

• widen(S, t, n) returns a points-to set S ′ such that

S ′(all) =

{
S(all) t locality(lat(t, n)) if S(all) 6= ⊥
⊥ if S(all) = ⊥.

The abstract interpretation rules otherwise remain the same, with join operations reflecting the new
ordering on points-to sets.
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6.8 Implementation
We have implemented a prototype of the pointer analysis in the Titanium compiler that analyzes
only the machine team hierarchy. For evaluation purposes, we implemented three variants of the
analysis, with one, two, and three levels of hierarchy. The single-level analysis combines all three
levels and cannot be used for either locality or sharing inference. In two-level analysis, level 1
remains separate while levels 2 and 3 are combined. Level 1 must be separate in order to perform
sharing analysis, and this separation still allows locality inference, though with less precision than
combining levels 1 and 2. Finally, the three-level analysis separates all three levels, providing the
most precise results.

6.8.1 Titanium Features
The Ti language is much simpler than Titanium, and certain Titanium features require special
treatment:

• types: objects in Titanium have types, so the corresponding abstract locations are also typed.

• fields: objects can have multiple fields, so an abstract location must have points-to sets for
each of its fields

• arrays: arrays can have multiple entries. For simplicity, the analysis makes no attempt to
distinguish between the different entries of an array.

• method calls: methods may have parameters, return values, and a this value. The analysis
considers each of these to be variables, and the result of a method call is the set of abstract
locations corresponding to its return variable.

• dynamic dispatch: a method call on an object may dispatch to different targets at runtime.
The analysis can compute a conservative but precise estimate of the possible dispatch targets
by examining the types of the abstract locations corresponding to the source object.

• native code: native methods are handled conservatively for the most part. However, the
analysis assumes that a native method does not violate type safety, and that it does not modify
the fields of an object in certain ways. Native library methods are treated specially by the
analysis if they violate these assumptions.

6.8.2 Optimizations
A handful of optimizations were applied to the pointer analysis. Execution time can likely be
improved drastically by using binary decision diagrams [104].
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6.8.2.1 Lazy Analysis

Titanium is to a large extent backwards compatible with Java, providing most of its language
features and much of its library. The typical Titanium program uses only a small portion of the
Java library, so analyzing the entire library is unnecessary. The pointer analysis implementation
is lazy in that it only analyzes those methods that are reachable from the program entry point and
static initializers. It does so by marking the main() method and static initializers reachable, and
the rest of the methods unreachable. When the analysis encounters a call to an unreachable method,
it makes the method reachable and proceeds to analyze it. This is continued until a fixed point is
reached.

6.8.2.2 On-Demand Creation of Abstract Locations

Theoretically, the pointer analysis requires A · h abstract locations, where A is the number of
allocation sites and h is the number of levels in the analysis. However, if a particular thread-
local abstract location is never leaked beyond its creator thread, the analysis never uses the wider
versions of the location. The implementation takes advantage of this fact by only creating the
wider counterparts on demand if the thread-local version is leaked.
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Chapter 7

Concurrency Analysis

A precise knowledge of the set of concurrent statements in parallel programs is fundamental to
many analyses and optimizations, including race detection and synchronization elimination. In
this chapter, we develop an analysis that determines which statements may be concurrent in the
context of each team in a program. More specifically, for each level in a team hierarchy and each
pair of statements, we infer if there is a subteam at that level that may contain two threads that
execute the statements concurrently.

We start by reviewing a global concurrency analysis that we defined in previous work [52,
49]. This analysis constructs a graph representation of a program to represent its concurrency
information. It is a flat analysis, in the sense that it only computes concurrency results for the
global team, and it does not take into account the rest of the machine hierarchy or any of the
other team hierarchies in a program. We then describe a hierarchical extension of the analysis that
simultaneously computes concurrency information for all teams in a program.

7.1 Flat Concurrency Analysis
We begin by defining a flat, non-hierarchical concurrency analysis for SPMD programs with global,
textually-aligned collectives. We start with a basic analysis and then improve on its results by only
considering program paths that can occur at runtime.

7.1.1 Analysis Background
Our concurrency analyses do not operate directly on Titanium program’s source code, but on a
graph representation of a reduced form of the program, in order to simplify both the theory and
implementation of the analyses.

7.1.1.1 Intermediate Language

We operate on an intermediate language that allows the full semantics of Titanium but is simpler
to analyze. In particular, Titanium follows the object-oriented semantics of Java, including dy-
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call foo()

foo() return

entry

exit

…

bar: foo:
…

…

foo()

entry

exit

…

bar: foo:
…

…

Figure 7.1: Construction of the interprocedural control-flow graph of a program from the individual
method-flow graphs.

namic dispatches on instance methods. We rewrite such dynamic dispatches as conditionals for
simplicity; a call x.foo(), where x is of type A in the class hierarchy

class A {
void foo ( ) { . . . }

}

class B extends A {
void foo ( ) { . . . }

}

gets rewritten to

if ( [type of x is A ] )
x .A$foo ( ) ;

else if ( [type of x is B ] )
x .B$foo ( ) ;

We also rewrite switch statements and conditional expressions (... ? ... : ...) as conditional
if ... else ... statements.

7.1.1.2 Control-Flow Graphs

The concurrency algorithms are whole-program analyses that operate over a control-flow graph
that represents the flow of execution in a program. Nodes in the graph correspond to expressions
in the program, and a directed edge from one expression to another occurs when the target can
execute immediately after the source.

The Titanium compiler produces an intraprocedural control-flow graph for each method in a
program. We modify each of these graphs to model transfer of control between methods by split-
ting each method-invocation node into a call node and a return node. The incoming edges of the
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original node are attached to the call node, and the outgoing edges to the return node. An edge
is added from the call node to the target method’s entry node, and from the target method’s exit
node to the return node. (Since dynamic dispatches are rewritten as conditionals, each invoca-
tion only has a single target.) Figure 7.1 illustrates this procedure. We also add edges to model
interprocedural control flow due to exceptions.

7.1.2 Basic Analysis
Titanium’s structural correctness allows us to develop a simple graph-based algorithm for comput-
ing concurrent expressions in a program. The algorithm specifically takes advantage of Titanium’s
textually-aligned barriers and single-valued expressions. (We use the term barrier here to refer to
not just actual barriers, but any collective operation that prevents code before and after the opera-
tion from running concurrently within the affected team. Thus, Titanium broadcast expressions do
not qualify as barriers here, while exchange operations do. In this section, we assume all barriers
are global.) For the purposes of the flat concurrency analysis, we assume that textual alignment is
enforced either by the single type system described in §4.1 or the strict dynamic-alignment scheme
discussed in §4.2.

The following definitions are useful in developing the analysis:
Definition 7.1.1. (Single Conditional) A single conditional is a conditional guarded by a single-
valued expression.

As described in §4, a single-valued expression evaluates to coherent results on all threads. Thus,
every thread is guaranteed to take the same branch of a single conditional. A single conditional
may contain a barrier, since all threads are guaranteed to execute it, while a non-single conditional
may not.
Definition 7.1.2. (Cross Edge) A cross edge in a control-flow graph connects the end of the first
branch of a conditional to the start of the second branch.

Cross edges do not provide any control-flow information, since the second branch of a condi-
tional does not execute immediately after the first branch. They are, however, useful for determin-
ing concurrency information, as shown in Theorem 7.1.4.

In order to determine the set of concurrent expressions in a program, we construct a concur-
rency graph G to represent concurrency information for the program P . We do so by inserting
cross edges in the interprocedural control-flow graph of P for every non-single conditional and
deleting all barriers and their adjacent edges. Algorithm 7.1.3 in Figure 7.2 illustrates this proce-
dure. The algorithm runs in time O(n), where n is the number of statements and expressions in P ,
since it takes O(n) time to construct the control-flow graph of a program. The control-flow graph
is very sparse, containing only O(n) edges, since the number of expressions that can execute im-
mediately after a particular expression e is constant. Since at most n cross edges are added to the
control-flow graph and at most O(n) barriers and adjacent edges are deleted, the resulting graph G
is also of size in O(n).

The concurrency graph G allows us to determine the set of concurrent expressions using the
following theorem:
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Algorithm 7.1.3.
ConcurrencyGraph(P : program) : graph

1. LetG be the interprocedural control-flow graph of P , as described in §7.1.1.2.
2. For each conditional C in P {
3. If C is not a single conditional:
4. Add a cross edge for C in G.
5. } // End for (2).
6. For each barrier B in P :
7. Delete the node for B and its adjacent edges from G.
8. Return G.

Figure 7.2: Algorithm 7.1.3 computes the concurrency graph of a program by inserting cross edges
into its control-flow graph and deleting all barriers.

1 Ti .barrier ( ) ;
2 int i = 0 ;
3 int j = 1 ;
4 if (Ti .thisProc ( ) < 5)
5 j += Ti .thisProc ( ) ;
6 if (Ti .numProcs ( ) >= 1) {
7 i = Ti .numProcs ( ) ;
8 Ti .barrier ( ) ;
9 j += i ;

10 } else { j += 1 ; }
11 i = broadcast j from 0 ;
12 Ti .barrier ( ) ;
13 j += i ;

Code Phase Statements
1 2, 3, 4, 5, 6, 7, 10, 11
8 9, 11

12 13

Figure 7.3: The set of code phases for a sample program.

Theorem 7.1.4. Two expressions a and b in P can run concurrently only if one is reachable from
the other in the concurrency graph G.

In order to prove Theorem 7.1.4, we require the following definition:
Definition 7.1.5. (Code Phase) The code phase of a barrier is the set of expressions that may
execute after the barrier but before hitting another barrier, including itself1.

Figure 7.3 shows the code phases of an example program. Since each code phase is preceded
by a barrier, and each thread must execute the same sequence of barriers, each thread executes the
same sequence of code phases. This implies the following:

1A statement can be in multiple code phases, as is the case for a statement in a method called from multiple
contexts.
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Lemma 7.1.6. Two expressions a and b in P can run concurrently only if they are in the same code
phase.

Proof. Suppose a and b are never in the same code phase. Then they are always preceded by two
different barriers. Consider arbitrary occurrences of a and b in any program execution in which
they both occur. (If one or both don’t occur, then they trivially don’t run concurrently.) Let Ba

and Bb be the barriers preceding a and b, respectively. Since every thread executes the same set of
barriers, either Ba precedes Bb or Bb precedes Ba. Since a occurs after Ba but before any other
barrier, and b occurs after Bb but before any other barrier, this implies that a and b are separated
by a barrier. Thus, a and b cannot run concurrently, since a barrier prevents the code before it and
after it from executing concurrently.

We can now prove Theorem 7.1.4:

Proof of Theorem 7.1.4. Suppose a and b can run concurrently. By Lemma 7.1.6, a and b must be
in the same code phase S. By Definition 7.1.5, there must be program flows from the initial barrier
BS to a and b that do not go through barriers. There are three cases:
Case 1: There is a program flow from a to b in S. This means the control-flow graph of the program
must contain a path from the node for a to the node for b that does not pass through a barrier. Since
G contains all nodes and edges of the control-flow graph except those corresponding to barriers, it
also contains such a path, so b is reachable from a.
Case 2: There is a program flow from b to a in S. This case is analogous to the one above.
Case 3: There is no program flow either from a to b or from b to a in S. Since there is a flow from
BS to a and from BS to b, a and b must be in different branches of a conditional C. Since only
one branch of a single conditional can run, C must be a non-single conditional in order for a and b
to run concurrently. Without loss of generality, let a be in the first branch, and b be in the second.
Since C is non-single, it cannot contain a barrier, and the end of the first branch is reachable in G
from a without hitting a barrier. Similarly, b is reachable from the beginning of the second branch
without executing a barrier. Since G contains a cross edge from the first branch of C to the second,
this implies that there is a path from a to b in G that does not pass through a barrier.

By Theorem 7.1.4, in order to determine the set of all pairs of concurrent expressions, it suffices
to compute the pairs of expressions in which one is reachable from the other in the concurrency
graph G. This can be done efficiently by performing a depth-first search from each expression in
G. Algorithm 7.1.7 in Figure 7.4 does exactly this. The running time of the algorithm is dominated
by the depth-first searches, each of which takes O(n) time, since G has at most n nodes and O(n)
edges. At most n searches occur, so the algorithm runs in time O(n2).

7.1.3 Feasible Paths
Algorithm 7.1.7 computes an over-approximation of the set of concurrent expressions. In par-
ticular, due to the nature of the interprocedural control-flow graph constructed in §7.1.1.2, the
depth-first searches in Algorithm 7.1.7 can follow infeasible paths, paths that cannot structurally
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Algorithm 7.1.7.
ConcurrentExpressions(P : program) : set

1. Let concur ← ∅.
2. Let G← ConcurrencyGraph(P ) [Algorithm 7.1.3].
3. For each access a in P {
4. Do a depth-first search on G starting from a.
5. For each expression b reached in the search:
6. Insert (a, b) into concur.
7. } // End for (3).
8. Return concur.

Figure 7.4: Algorithm 7.1.7 computes the set of all pairs of concurrent expressions in a given
program.

call foo()

foo() return

call foo()

foo() return

entry

exit

…

bar: foo: baz:
… …

… …

Figure 7.5: Interprocedural control-flow graph for two calls to the same function. The dashed path
is infeasible, since foo() returns to a different context than the one from which it was called. The
infeasible path corresponds to the unbalanced string “[}”.

occur in practice. Figure 7.5 illustrates such a path, in which a method is entered from one context
and exits into another.

In order to prevent infeasible paths, we follow the procedure outlined by Reps [86]. We label
each method call edge and corresponding return edge with matching parentheses, as shown in
Figure 7.5. Each path then corresponds to a string of parentheses composed of the labels of the
edges in the path. A path is then infeasible, if in its corresponding string, an open parenthesis is
closed by a non-matching parenthesis.

It is not necessary that a path’s string be balanced in order for it to be feasible. In particular,
two types of unbalanced strings correspond to feasible paths:

• A path with unclosed parentheses. Such a path corresponds to method calls that have not yet
finished, as shown in the left side of Figure 7.6.
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call foo()

foo() return

entry

exit

…

bar: foo:
…

…

call foo()

foo() return

entry

exit

…

bar: foo:
…

…

Figure 7.6: Feasible paths that correspond to unbalanced strings. The dashed path on the left
corresponds to a method call that has not yet returned, and the one on the right corresponds to a
path that starts in a method call that returns.

• A path with closing parentheses that follow a balanced prefix. Such a string is allowed since
a path may start in the middle of a method call and corresponds to that method call returning,
as shown in the right side of Figure 7.6.

Determining the set of nodes reachable2 using a feasible path is the equivalent of performing
context-free language (CFL) reachability on a graph using the grammar for each pair of matching
parentheses (α and )α. CFL reachability can be performed in cubic time for an arbitrary grammar
[86]. Algorithm 7.1.7 takes only quadratic time, however, and we desire a feasibility algorithm that
is also quadratic. In order to accomplish this, we develop a specialized algorithm that modifies the
concurrency graph G and the standard depth-first search instead of using generic CFL reachability.

At first glance, it appears that a method must be revisited in every possible context in which it
is called, since the context determines which open parentheses have been seen and therefore which
paths can be followed. However, as we now show, the set of expressions that can be executed in a
method call is the same regardless of context.
Theorem 7.1.8. Ignoring the effect of the arguments, the set of expressions that may be executed
in a call to a method f is the same regardless of the context in which f is called.

Proof by induction over the function call depth.
Base case: The execution of f makes no method calls. Then the call to f can execute at most those
expressions that are contained in f and reachable from its entry regardless of the calling context.

2In this section, we make no distinction between reachable and reachable without hitting a barrier. The latter
reduces to the former if all barrier nodes are removed from each control-flow graph. We also restrict ourselves to a
static definition of reachability, since reachability at runtime is uncomputable.
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Inductive step: The execution of f makes method calls. By the inductive hypothesis3, each method
call in f can transitively execute the same expressions independent of the context. In addition, the
call to f can execute exactly those expressions that are contained in f and reachable from its entry.
The call to f thus can execute the same set of expressions regardless of context.

Theorem 7.1.8 implies that the set of nodes reachable along a feasible path in a program’s
control-flow graph is independent of the context of a method call, with two exceptions:

• If a method call can complete, then the nodes after the call are reachable from a point before
the call.

• If no context exists, such as in a search that starts from a point within a method f , then all
nodes that can be reached from the return node of any method call to f are reachable.

The second case above can easily be handled by visiting a node twice: once in some context, and
again in no context. The first case, however, requires adding bypass edges to the control-flow
graph.

7.1.3.1 Bypass Edges

In §7.1.1.2, we constructed the interprocedural control-flow graph of a program by splitting each
method call into a call node and a return node. We then added an edge from the call node to the
target method’s entry, and another from the target’s exit to the return node. If the target’s exit is
reachable (or for our purposes, reachable without hitting a barrier) from the target’s entry, then
adding a bypass edge that connects the call node directly to the return node does not affect the
transitive closure of the graph.

Computing whether or not a method’s exit is reachable from its entry is not trivial, since it
requires knowing whether or not the exits of each of the methods that it calls are reachable from
their entries. Algorithm 7.1.9 in Figure 7.7 computes this by continually iterating over all the
methods in a program, marking those that can complete through an execution path that only calls
previously marked methods, until no more methods can be marked. In the first iteration of loop
3, it only marks those methods that can complete without making any calls, or equivalently, those
methods that can complete using only a single stack frame. In the second iteration, it only marks
those that can complete by calling only methods that don’t need to make any calls, or equivalently,
those methods that can complete using only two stack frames. In general, a method is marked in
the ith iteration if it can complete using i, and no less than i, stack frames4. We now prove the
correctness of Algorithm 7.1.9.
Theorem 7.1.10. Algorithm 7.1.9 marks all methods that can complete using any number of stack
frames.

3In order for induction to be applicable, the function call depth in f must be finite. It is reasonable to assume that
this is always the case, since in practice, an infinite function call depth is impossible due to finite memory limits.

4The fact that a method only requires a fixed number of stack frames does not mean that it can complete. A method
may contain a loop with no exit, preventing the method from completing at all, or barriers along all paths through it,
preventing it from completing without executing a barrier. Algorithm 7.1.9 does not mark such methods.
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Algorithm 7.1.9.
ComputeBypasses(P : program, G1, . . . , Gk : intraprocedural flow graph) : set

1. Let change← true.
2. Let marked← ∅.
3. While change = true {
4. change← false.
5. Set visited(u)← false for all nodes u in G1, . . . , Gk.
6. For each method f in P {
7. If f 6∈ marked and CanReach(entry(f), exit(f), Gf , marked) {
8. marked← marked ∪ {f}.
9. change← true.

10. } // End if (7).
11. } // End for (6).
12. } // End while (3).
13. Return marked.

14. Procedure CanReach(u, v : vertex, G : graph, marked : method set) : boolean:
15. Set visited(u)← true.
16. If u = v:
17. Return true.
18. Else If u is a method call to function g and g 6∈ marked:
19. Return false.
20. For each edge (u,w) ∈ G {
21. If visited(w) = false and CanReach(w, v,G,marked):
22. Return true.
23. } // End for (20).
24. Return false.

Figure 7.7: Algorithm 7.1.9 uses each method’s intraprocedural control-flow graph (Gi) to deter-
mine if its exit is reachable from its entry.

Proof. Suppose there are some methods that can complete but that Algorithm 7.1.9 does not find.
Out of these methods, let f be the one that can complete with the minimum number of stack frames
j. In order for f to require j frames to complete, there must be an execution path through f that
only calls methods that require at most j − 1 frames to complete. These methods must all be
marked, since f is the minimum method that isn’t marked. Let i be the iteration in which the
last of these methods is marked. Since a method is marked in this iteration, loop 3 will iterate at
least once more. Since f now has a path in which it only calls marked methods, f will be marked
in the (i + 1)th iteration. This is a contradiction, so Algorithm 7.1.9 marks all methods that can
complete.

Algorithm 7.1.9 requires quadratic time to complete in the worst case. Each iteration of loop
3 visits at most n nodes. Only k iterations are necessary, where k is the number of methods in
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Algorithm 7.1.11.
FeasibleSearch(v : vertex, G : graph) : set

1. Let visited← ∅.
2. Let s← ∅.
3. Call FeasibleDFS(v, G, s, visited).
4. Return visited.

5. Procedure FeasibleDFS(v : vertex, G : graph, s : stack, visited : set):
6. If s = ∅ {
7. If no context mark(v) return.
8. Set no context mark(v)← true.
9. } // End if (6).

10. Else {
11. If context mark(v) return.
12. Set context mark(v)← true.
13. } // End else (10).
14. visited← visited ∪ {v}
15. For each edge (v, u) ∈ G {
16. Let s′ ← s.
17. If label(v, u) is a close symbol and s′ 6= ∅ {
18. Let o← pop(s′).
19. If label(v, u) does not match o:
20. Skip to next iteration of 15.
21. } // End if (17).
22. Else if label(v, u) is an open symbol:
23. Push label(v, u) onto s′.
24. Call FeasibleDFS(u, G, s′).
25. } // End for (15).

Figure 7.8: Algorithm 7.1.11 computes the set of nodes reachable from the start node through a
feasible path.

the program, since at least one method is marked in all but the last iteration of the loop. The total
running time is thus O(kn) in the worst case. In practice, only a small number of iterations are
necessary5, and the running time is closer to O(n).

After computing the set of methods that can complete, it is straightforward to add bypass edges
to the concurrency graph G: for each method call c, if the target of c can complete, add an edge
from c to its corresponding method return r. This can be done in time O(n).
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7.1.3.2 Feasible Search

Once bypass edges have been added to the graph G, a modified depth-first search can be used to
find feasible paths. A stack of open but not yet closed parenthesis symbols must be maintained,
and an encountered closing symbol must match the top of this stack, if the stack is nonempty. In
addition, as noted above, the modified search must visit each node twice, once in no context and
once in some context. Algorithm 7.1.11 in Figure 7.8 formalizes this procedure, and we prove that
it only follows feasible paths.
Theorem 7.1.12. Algorithm 7.1.11 does not follow any infeasible paths.

Proof. Consider an arbitrary infeasible path p. In order for p to be infeasible, the labels along p
must form a string in which an open parenthesis (α is closed by a non-matching parenthesis )β .
Consider the execution of Algorithm 7.1.11 on this path. An open parenthesis is pushed onto the
the stack s when it is encountered, so before any close parentheses are encountered, the top of the
stack is the most recently opened parenthesis. A close parenthesis causes the top of the stack to be
popped, so in general, the top of the stack is the most recently opened parenthesis that has not yet
been closed. Now consider s when the label )β is reached. The symbol (α must be on the top of s,
since )β closes it. But Algorithm 7.1.11 checks the top of the stack against the newly encountered
label, and since they don’t match, it does not proceed along p.

SinceG contains bypass edges and Algorithm 7.1.11 visits each node both in some context and
in no context, it finds all nodes that can be reachable in a feasible path from the source. Since it
visits each node at most twice, it runs in time O(n).

7.1.3.3 Feasible Concurrent Expressions

Putting it all together, we can now modify Algorithm 7.1.7 to find only concurrent expressions
that are feasible. As in Algorithm 7.1.7, the concurrency graph G must first be constructed. Then
the intraprocedural flow graphs of each method must be constructed, Algorithm 7.1.9 used to find
the methods that can complete without hitting a barrier, and the bypass edges inserted into G.
Then Algorithm 7.1.11 must be used to perform the searches instead of a vanilla depth-first search.
Algorithm 7.1.13 in Figure 7.9 illustrates this procedure.

The setup of Algorithm 7.1.13 calls Algorithm 7.1.9, so it takes O(kn) time. The searches each
take time in O(n), and at most n are done, so the total running time is in O(kn + n2) = O(n2),
quadratic as opposed to the cubic running time of generic CFL reachability.

7.2 Hierarchical Concurrency Analysis
We now develop a hierarchical extension to the above feasible-paths concurrency analysis. The
preceding analysis determines concurrency information in the context of a single team, namely the

5Even on the largest example we tried (>45,000 lines of user and library code, 1226 methods), Algorithm 7.1.9
required only five iterations to converge.
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Algorithm 7.1.13.
FeasibleConcurrentExpressions(P : program) : set

1. Let G← ConcurrencyGraph(P ) [Algorithm 7.1.3].
2. For each method f in P {
3. Construct the intraprocedural flow graph Gf of f .
4. For each barrier B in f {
5. Delete B from Gf .
6. } // End for (4).
7. } // End for (2).
8. Let bypass← ComputeBypasses(P , G1, . . . , Gk) [Algorithm 7.1.9].
9. For each method call and return pair c, r in P {

10. If the target f of c, r is in bypass:
11. Add an edge (c, r) to G.
12. } // End for (9).
13. For each expression a in P {
14. Let visited← FeasibleSearch(a, G) [Algorithm 7.1.11].
15. For each expression b ∈ visited:
16. Insert (a, b) into concur.
17. } // End for (13).
18. Return concur.

Figure 7.9: Algorithm 7.1.13 computes the set of all concurrent expressions that can feasibly occur
in a given program.

global team. A trivial way to extend the analysis to multiple team hierarchies and levels would
be to repeat the analysis for each hierarchy and level. This would be very inefficient, however, so
we develop an algorithm that performs concurrency analysis simultaneously on all hierarchies and
levels.

7.2.1 The Concurrency Graph
The addition of multiple team hierarchies requires some changes to the concurrency graph used in
the analysis. We describe those changes here.

7.2.1.1 Barriers

In the previous analysis, nodes corresponding to barrier operations were removed from the concur-
rency graph, along with all adjacent edges. With the addition of teams, barriers can be on subsets
of all threads, so they only prevent code from running concurrently within the context of particular
team hierarchies and levels. Thus, we can no longer completely remove them from the concurrency
graph. Instead, we replace each pair of incoming and outgoing edges with a special barrier edge
that is labeled with the set of teams on which the barrier can operate, as shown in Figure 7.10. This
set of teams is computed or specified as described in §5.5.
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a ;
Ti .barrier ( ) ;
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b ;
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Figure 7.10: Example of a concurrency graph. Dashed edges are barrier edges.

7.2.1.2 Single Conditionals

A single conditional is redefined to be a conditional guarded by an expression whose value is the
same on all threads in the executing team. As a result, all threads in the team are guaranteed to take
the same branch. On the other hand, threads may take different branches of a non-single condi-
tional, so that code in different branches may run concurrently. Since alignment of team collectives
is enforced by the dynamic scheme described in §4.3, it is necessary to compute which conditionals
are single. Strict and weak alignment schemes result in different sets of single conditionals.

Strict alignment requires that all threads in the executing team take the same branch of a con-
ditional that may execute a collective. Such a conditional either directly contains a collective oper-
ation or calls a method that may execute a collective. The Titanium compiler already computes the
set of such conditionals for the purposes of instrumenting a program to dynamically enforce collec-
tive alignment. All such conditionals are single under strict alignment, so no further computation
is necessary.
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Weak alignment, on the other hand, only requires that all threads in the executing team take
the same branch of a conditional when any of those threads encounter a collective operation in
the execution of that conditional. Statically, the compiler can only assume that a conditional is
single if at least one of its two branches6 must execute a collective. A non-conditional statement
or expression must execute a conditional if it is a collective operation, or contains code or calls
a method that must execute a collective. A conditional must execute a collective if both of its
branches must execute a collective. (A conditional is single but does not must-execute a collective
if exactly one of its branches must execute a collective.) It is straightforward to modify the current
may-execute analysis to also compute must-execute information.

The following code demonstrates the difference between strict and weak alignment in deter-
mining the set of single conditionals.

1 if (a ) {
2 if (b ) {
3 if (c ) {
4 Ti .barrier ( ) ;
5 } else {
6 Ti .barrier ( ) ;
7 }
8 } else {
9 }

10 } else {
11 }

All three conditionals are single under strict alignment, since they all contain a collective operation
and may execute a collective. Under weak alignment, both branches of the conditional at line 3
must execute a collective, so it is single and must execute a collective. Only the first branch of the
conditional at line 2 must execute a collective, so it is single but does not must-execute a collective.
Finally, neither branch of the conditional at line 1 must execute a collective, so it is neither single
nor must it execute a collective.

As before, non-single conditionals require the addition of cross edges in the concurrency graph
that connect the end of the first branch to the beginning of the second to represent the fact that
the two branches may execute concurrently. A single conditional also requires some form of cross
edge, since its branches are only non-concurrent in the context of the team under which it executes.
We use a barrier cross edge that is labeled with the possible teams under which the conditional
may execute.

7.2.1.3 Partition Statements

A partition statement includes a branch on a thread’s subteam. Though there may be no program
path between the blocks of a partition statement, they do execute concurrently on different sub-

6As discussed in §7.1.1.1 must execute a collective, the concurrency analysis operates on an intermediate form in
which all switch statements and dynamically-dispatched method calls are rewritten to if statements. The latter can be
considered to always have two branches, one of which may be empty or contain nested conditionals.
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teams. To represent this, cross edges must be added between blocks. Plain cross edges, however,
would indicate that the blocks may run concurrently on all teams. Instead, a barrier cross edge
should be added, labeled with the possible subteams that can execute the partition blocks. This
would indicate that the blocks may not be concurrent in the context of those teams but may be in
others.

7.2.2 Analysis
As before, the concurrency analysis consists of a series of depth-first searches (DFS), one from
each node in the concurrency graph. In the original analysis, at the conclusion of each DFS,
each node in the program is in one of two states: reachable or unreachable. Two nodes may be
concurrent in the global team if the second is reachable from the first in the DFS starting from the
first node, or if the first is reachable from the second in the DFS starting from the second node.

With the addition of teams, we are now interested in which team hierarchies and levels that two
nodes may be concurrent. Two nodes are concurrent in a particular hierarchy and level if there may
be two threads within the same corresponding subteam that execute the two nodes concurrently.
For example, statements b and c in Figure 7.10, in the context of the teams in Figure 6.6, are
concurrent at level 1 in tm and globally (i.e. at level 0) in t2 and t7. On the other hand, statements
a and b are not concurrent in any team hierarchy or level.

In order to represent the more complicated concurrency information, we expand the abstract
state of each node in a DFS from a simple binary state to a compound state involving each set of
team hierarchies.

7.2.2.1 Abstract State

The abstract state of a node consists of an n + 1 tuple, where n is the number of team hierarchies
in the program. Due to the way in which the team lattice is constructed in §5.5.1, n is equal to
the number of parent elements of the thread local element in a team lattice. It is also equal to the
number of paths from global to thread local, since each path corresponds to a single team hierarchy.

For each element in the state tuple, the set of possible values form a lattice. The first element
corresponds to the context and no-context marks in the original analysis and takes on the values
⊥ = unmarked < context < no context = >. The remaining n elements correspond to the n
team hierarchies. For each team hierarchy, there is a simple lattice corresponding to the levels in
the team. A node is more concurrent with respect to a particular team if it is concurrent in a lower
level of the team. For example, a node is more concurrent with respect to t2 if it is concurrent
in t2(2) than if it is concurrent in t2(1); if there is a thread in the same subteam at t2(2) that
concurrently executes the node, then that same thread must be in the same subteam at t2(1). The
reverse is not necessarily true. Thus, higher levels of the team hierarchy should be lower in the
lattice. The lattice for t2, in particular, is ⊥ < global < t2(1) < t2(2) = >. No element for thread
local is in the lattice7, and there is an extra ⊥ element that denotes that a node is non-concurrent

7We assume that a single thread cannot concurrently execute multiple expressions. Non-blocking operations
violate this assumption, but we are only concerned with concurrency across threads in this analysis.
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= tm(1)

global

= none

= t2(2)

t2(1) = t7(1)

global

= none

= t7(2)

t2(1) = t7(1)

global

= none

Figure 7.11: Concurrency-analysis lattices corresponding to the teams in Figure 6.6.

in t2. Figure 7.11 shows the lattices for the set of teams from Figure 6.6. Compare it to the team
lattice in Figure 5.4.

State tuples themselves form a lattice, with

s1 v s2 ⇐⇒ ∀i ∈ [0, n+ 1). s1(i) v s2(i)

for any tuples s1 and s2. This lattice has height in O(
∑

t∈T height(t)), where T is the set of all
team hierarchies and height(t) is the height of a particular team hierarchy t.

Discussion The abstract state defined above is only semi-hierarchical, in that it keeps track of
each team hierarchy separately and does not take into account relationships between different hi-
erarchies. This raises the question as to why we do not use a purely hierarchical abstract state. We
demonstrate that such a state results in reduced precision in the analysis.

Consider the possible hierarchical state lattice shown in Figure 7.12. Using a single lattice
element, how can we represent a state denoting that a node may be concurrent in t2(2) and t7(2)
but not in tm(1)? Such a state would arise following a barrier on tm(1), and in the semi-hierarchical
abstract state described above, it would be represented as (∗, global, t2(2), t7(2)). Using the purely
hierarchical lattice, we could represent this state as tm(1), if a particular element denotes that the
node is non-concurrent in the element’s corresponding team but may be concurrent in other teams.

Now, using the proposed scheme, how can a state denoting that a node is non-concurrent in
tm(1) and t2(2) but may be concurrent in t7(2) be represented? This state would arise following
consecutive barriers on tm(1) and t2(2). The state (∗, global, t2(1), t7(2)) would represent this in
the semi-hierarchical scheme. But in the purely hierarchical scheme in which an element represents
non-concurrency in the associated team, there is no single element in the lattice that corresponds
to this state. The best we could do would be to use either tm(1) or t2(2) individually, losing
information about non-concurrency in the other team.

Thus, a purely hierarchical scheme results in a loss of precision, so we use the semi-hierarchical
scheme described above instead.
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= all

global

tm(1)

= none

t2(2) t7(2)

t2(1) = t7(1)

Figure 7.12: Possible hierarchical concurrency-analysis lattice corresponding to the teams in Fig-
ure 6.6.

7.2.2.2 Barrier Edges

A barrier denotes a decrease in concurrency between the code that follows it and the code that
precedes it. In order to represent this in the analysis, we assign each barrier edge a static state tuple
according to the team hierarchies and levels over which the barrier can execute and with the mark
element assigned > = no context.

Let us first consider a barrier edge on a single hierarchy and level t(k). Then for each team
hierarchy t′, its state element is child(t(k)), where child(t(k)) is the child element of t(k) in the
lattice for t′, if t(k) is an element in t′. Otherwise, its state element is >. As a concrete example,
the five possible single hierarchy/level barrier edges for the teams in Figure 6.6 have the following
states:

mark tm t2 t7
global: (no context, none, none, none)
tm(1): (no context, global, t2(2), t7(2))
t2(1): (no context, tm(1), global, global)
t2(2): (no context, tm(1), t2(1), t7(2))
t7(2): (no context, tm(1), t2(2), t2(1))

The state of a barrier edge that operates on multiple teams is the join of the states corresponding
to barrier edges on each of the individual teams. Thus, a barrier edge that can operate on t2(2) and
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Algorithm 7.2.1.
ConcurrencyGraph(P : program) : graph

1. Let G be the interprocedural control-flow graph of P .
2. For each conditional C in P {
3. If C is not a single conditional:
4. Add a cross edge for C in G.
5. } // End for (2).
6. For each partition statement Q in P {
7. For each pair of consecutive blocks (b1, b2) in Q:
8. Add a barrier cross edge in G from b1 to b2 with state as described in §7.2.2.2.
9. } // End for (6).

10. For each barrier B in P {
11. For each pair of incoming and outgoing edges (e1 = (u,B), e2 = (B, v)):
12. Add a barrier edge e = (u, v) to G with state as described in §7.2.2.2.
13. Delete B and its adjacent edges from G.
14. } // End for (10).
15. Return G.

Figure 7.13: Algorithm 7.2.1 computes the concurrency graph of a program by inserting cross
edges into its control-flow graph and replacing barrier nodes with barrier edges.

t7(2) has state

(no context,tm(1), t2(1), t7(2)) t (no context, tm(1), t2(2), t2(1))
= (no context, tm(1), t2(2), t7(2)),

and an edge that operates on t2(1) and t7(2) has state

(no context,tm(1), global, global) t (no context, tm(1), t2(2), t2(1))
= (no context, tm(1), t2(2), t2(1)).

Figure 7.13 demonstrates how the concurrency graph is constructed. Barrier edges are assigned
states as discussed above.

7.2.2.3 Basic Search Algorithm

Various pieces of the concurrency analysis perform searches on concurrency graphs. These are
at their core basic depth-first searches, with minor modifications. In the previous analysis, since
barriers are deleted from a concurrency graph, these searches would terminate upon encountering
a barrier. In the new analysis, however, barriers are not deleted, and a search path should only
terminate with respect to the specific teams on which a barrier may execute.

Algorithm 7.2.2 performs a basic depth-first search over the new concurrency graph. The
search has a running state, representing the set of teams in which the current node may be concur-
rent with the search origin. Initially, this state is set to > for all team hierarchies, denoting that the
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Algorithm 7.2.2.
Search(v : vertex, G : graph) :

1. Set state(u)← ⊥ for all nodes u in G.
2. Call DFS(v, G, >n+1).

3. Procedure DFS(v : vertex, G : graph, q : search state):
4. Set state(v)← state(v) t q.
5. For each edge e = (v, u) ∈ G {
6. Let q′ ← q.
7. If e is a barrier edge:
8. Set q′ ← q′ u state(e).
9. If (state(u) t q′) = state(u):

10. Call DFS(u, G, q′).
11. } // End for (5).

Figure 7.14: Algorithm 7.2.2 performs a depth-first search on a concurrency graph.

start node is concurrent with itself in all teams. Each node starts out with a state of⊥. When a new
node is visited, its state is set to the join of its old state and the current search state. For example, if
a node is adjacent to the start with no intervening barrier edge, then its state is also set to >, and it
is concurrent with the start node in all teams. On the other hand, upon encountering a barrier edge,
the new search state is the meet of the old search state and the state of the barrier edge, denoting
that subsequent nodes are not concurrent in the team on which the barrier executes, in the case of
a barrier that operates on only one team. A node is only revisited if its state changes, and a node is
concurrent with the start node in a particular team hierarchy and level t(k) if its final state element
for hierarchy t subsumes t(k), i.e. is a subset of t(k).

In order to demonstrate correctness of Algorithm 7.2.2, we must show that on a single team
hierarchy and level t(k), it marks exactly the same set of nodes concurrent in t(k) as a normal
depth-first search on a concurrency graph constructed specifically for t(k), with barriers that oper-
ate only on t(k) or a superset of t(k) removed from the graph.
Theorem 7.2.3. In a search starting from node v, Algorithm 7.2.2 marks the same set of nodes in
graph G concurrent in t(k) as a normal depth-first search on G′, a graph equivalent to G but with
all barrier edges that operate only on a superset of t(k) removed.

Proof. Consider an arbitrary path R in G taken by the search in Algorithm 7.2.2. The search state
at any point in the path is the meet of > and the states of all barrier edges along the path. Prior to
encountering a barrier edge that operates only on a superset of t(k), the search state always has a
subset of t(k) as its element for hierarchy t, since each barrier edge that does not operate solely on
a superset of t(k) has a subset of t(k) as its state element for t. Thus, all encountered nodes are
marked as concurrent in t(k). In the standard DFS on G′, no encountered barrier edges have been
removed, since they do not operate solely on a superset of t(k), so it will also follow the same path
and mark every node as concurrent.
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Upon encountering a barrier that operates only on a superset of t(k), the standard DFS on G′

stops, since the corresponding edge is deleted fromG′, marking no more nodes alongR. Algorithm
7.2.2, on the other hand, sets the search state to the meet of the previous state and that of the barrier
edge. Since the barrier operates only on a superset of t(k), its state element for t is the parent team
of the lowest subteam on which the barrier operates, which is a strict superset of t(k). Thus, the
new search state also has a strict superset of t(k) as its element for t. Since a new search state is
always the meet of the previous state and some other state, the search state in R after the barrier
will always have a strict superset of t(k) as its element for t, so that none of the remaining nodes
in R will be marked as concurrent in t(k).

Since both searches mark the same set of nodes as concurrent in t(k) before and after encoun-
tering a barrier on a superset of t(k), they mark the same set of nodes as concurrent in t(k).

A basic depth-first search can only visit each node O(
∑

t∈T height(t)) times, since a node is
only visited when its state changes. Thus, the search runs in O(n ·

∑
t∈T height(t)), where n is the

number of nodes in G8.

7.2.2.4 Bypass Edges

As described in §7.1.3.1, a bypass edge connects a call node and a return node, bypassing the
body of the invoked method. In the hierarchical analysis, bypass edges must be modified to be
barrier edges, denoting which barriers must be encountered between the start and end of a method.
Each method is now assigned a state tuple, initially set to ⊥. The bypass computation algorithm
continually iterates over all methods as before, until no changes are made. However, in each
iteration, the intraprocedural searches now carry a state, in each iteration initially set to >. Upon
encountering a barrier edge, the new search state is the meet of the old search state and the tuple
for the barrier edge. Similarly, upon encountering a method call, the new search state is the meet
of the old search state and that of the target method. Upon encountering any other node, the state
of that node is set to the join of its previous state and the search state. If the node’s state changes,
it is revisited in the context of the search state. exit is reached, the method’s state is updated to be
the join of its old state and the search state.

When an iteration of the bypass computation algorithm makes no changes to any method’s
state, the algorithm completes, and a bypass barrier edge is added for each method call with the
target method’s final state.

At most k + 1 iterations are required, where k is the number of methods in the program, since
at least one method is marked in all but the last iteration. An iteration visits each of the n nodes in
graph G at most O(

∑
t∈T height(t)) times, so that it takes time in O(n ·

∑
t∈T height(t)). Thus,

Algorithm 7.2.4 takes time in O(kn ·
∑

t∈T height(t)).
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Algorithm 7.2.4.
ComputeBypasses(P : program, G1, . . . , Gk : intraprocedural concurrency graph) :

1. Let change← true.
2. Set state(f)← ⊥ for all methods f in P .
3. While change = true {
4. Set change← false.
5. Set state(u)← ⊥ for all nodes u in G1, . . . , Gk.
6. For each method f in P {
7. Call CanReach(entry(f), exit(f), Gf , >).
8. If state(exit(f)) = state(f) {
9. Set state(f)← state(exit(f)).

10. Set change← true.
11. } // End if (8).
12. } // End for (6).
13. } // End while (3).

14. Procedure CanReach(u, v : vertex, G : graph, q : search state):
15. Set state(u)← state(u) t q.
16. If u = v:
17. Return.
18. Else If u is a method call to function g:
19. Set q ← q u state(g).
20. For each edge e = (u,w) ∈ G {
21. Let q′ ← q.
22. If e is a barrier edge:
23. Set q′ ← q′ u state(e).
24. If (state(w) t q′) = state(w):
25. Call CanReach(w, v,G, q′):
26. } // End for (20).

Figure 7.15: Algorithm 7.2.4 uses each method’s intraprocedural concurrency graph to determine
under which teams its exit is reachable from its entry.
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Algorithm 7.2.5.
FeasibleSearch(v : vertex, G : graph) :

1. Set state(u)← ⊥ for all nodes u in G.
2. Let s← ∅.
3. Call FeasibleDFS(v, G, s, >n+1).
4. Set concur({v, u})← concur({v, u}) t state(u) for all nodes u in G.

5. Procedure FeasibleDFS(v : vertex, G : graph, s : stack, q : search state):
6. Set state(v)← state(v) t q.
7. For each edge e = (v, u) ∈ G {
8. Let s′ ← s.
9. Let q′ ← q.

10. If label(e) is a close symbol and s′ 6= ∅ {
11. Let o← pop(s′).
12. If label(e) does not match o:
13. Skip to next iteration of 7.
14. Else if s′ = ∅:
15. Set q′ ← (no context) + q′(1 : n).
16. } // End if (10).
17. Else if label(e) is an open symbol {
18. If s′ = ∅:
19. Set q′ ← (context) + q′(1 : n).
20. Push label(e) onto s′.
21. } // End else (17).
22. Else if e is a barrier edge:
23. Set q′ ← q′ u state(e).
24. If (state(u) t q′) = state(u):
25. Call FeasibleDFS(u, G, s′, q′).
26. } // End for (7).

Figure 7.16: Algorithm 7.2.5 computes the set of teams under which each node is reachable from
the start node through a feasible path.
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7.2.2.5 Feasible-Search Algorithm

We modify the feasible-search algorithm to incorporate the new abstract states. The search keeps
track of a current state that consists of a single state tuple. Initially, this is set to a tuple with the
no context mark and > for each team hierarchy. This state is modified in the following cases:

1. When the stack is empty and an open parenthesis symbol is encountered, the mark is set to
context.

2. When a parenthesis is popped off the stack, if the stack becomes empty, then the mark is set
to no context.

3. When a barrier edge is encountered, the new state is the meet of the old state and the state
assigned to the barrier edge.

When visiting a node, the search sets the node’s new state to be the join of the current search state
and the node’s previous state. The node is reexamined only if its state changes.

Algorithm 7.2.5 visits each node at most O(
∑

t∈T height(t)) times, since it only visits a node
when its state changes. Thus, it runs in time O(n ·

∑
t∈T height(t)), where n is the number of

nodes in G.

7.2.2.6 Context Marks

The previous analysis used separate state elements to denote the context and no-context marks,
whereas in §7.2.2.1, we have combined them into a single element in which no-context subsumes
context. This is only valid if all paths that are feasible in a particular initial context are also feasible
in no initial context.
Theorem 7.2.6. Any path R in graph G that is feasible in an initial context S is also feasible in
an initially empty context.

Proof. In order for R to be feasible, the labels encountered along R must match. In particular, any
open parenthesis (α in R must either be closed by a matching close parenthesis )α or not closed at
all in R. Excluding matching sets of open and close parentheses in R, the remaining labels in R
consist of m unmatched close parentheses followed by n unmatched open parentheses, m,n ≥ 0.
In order for R to be feasible in an initial context S ′ consisting of k parentheses, the first min(m, k)
unmatched close parentheses in R must match those in S ′. This holds for S ′ = S, since R is
feasible in S. It also holds for S ′ = ∅, since k is then 0 and none of the m unmatched close
parentheses in R need be matched by the context in order for R to be feasible in S ′. Thus, R is
feasible an an initially empty context.

Thus, it is valid to use only a single state element to keep track of the context and no-context
marks.

8The concurrency graph G is very sparse, with only O(n) edges, so there is no explicit dependency on the number
of edges in the running time.
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Algorithm 7.2.7.
FeasibleConcurrentExpressions(P : program) :

1. Let G← ConcurrencyGraph(P ) [Algorithm 7.2.1].
2. For each method f in P {
3. Construct the intraprocedural concurrency graph Gf of f .
4. For each barrier B in f {
5. For each pair of edges (e1 = (u,B), e2 = (B, v)) in Gf :
6. Add a barrier edge e = (u, v) to Gf with state as described in §7.2.2.2.
7. Delete B and its adjacent edges from Gf .
8. } // End for (4).
9. } // End for (2).

10. Call ComputeBypasses(P , G1, . . . , Gk) [Algorithm 7.2.4].
11. For each method call and return pair c, r in P with target f :
12. Add a barrier edge (c, r) to G with state state(f).
13. Let concur({a, b})← ⊥ for each pair of nodes a, b in G.
14. For each node a in G:
15. Call FeasibleSearch(a, G) [Algorithm 7.2.5].

Figure 7.17: Algorithm 7.2.7 computes the set of teams under which any pair of expressions can
feasibly and concurrently execute in a given program.

7.2.2.7 Concurrent Expressions

The complete algorithm to compute concurrent expressions is shown in Figure 7.17. It begins by
using Algorithm 7.2.1 to construct the interprocedural concurrency graph. It then constructs cor-
responding intraprocedural graphs for each method and calls Algorithm 7.2.4 to compute bypass
edges, adding them to the concurrency graph. Finally, it calls Algorithm 7.2.5 starting from each
node in the graph. At the end of the algorithm, concur({a, b}) is a state tuple describing at which
level expressions a and b may be concurrent in each team hierarchy.

Algorithm 7.2.7 takes time in O(n) to construct the concurrency graphs, where n is the number
of statements and expressions in the program. It calls Algorithm 7.2.4, which takes time in O(kn ·∑

t∈T height(t)), where k is the number of methods in the program. It calls Algorithm 7.2.5
O(n) times, taking time in O(n2 ·

∑
t∈T height(t)). Since k is in O(n), the total running time for

Algorithm 7.2.7 is in O(n2 ·
∑

t∈T height(t)).
The theoretical running time for this analysis is exactly the same as for running the original

concurrency analysis separately for each team hierarchy and level. In practice, however, we expect
the actual running time of the new analysis to be far lower than repeating the old analysis, since
the new analysis performs simultaneous analysis on all teams.



87

Chapter 8

Evaluation

We now turn our attention to evaluating the recursive single program, multiple data (RSPMD) ex-
tensions in §3, the alignment scheme we proposed in §4, and the pointer and concurrency analyses
we described in §6 and §7. We start by examining four separate applications, writing or rewrit-
ing them in the RSPMD model, evaluating both expressiveness of the model and performance. We
then test implementations of the dynamic alignment scheme for collectives, providing performance
results for both raw collectives and complete application benchmarks. Finally, we evaluate pointer
analysis using locality and sharing inference and then combine it with concurrency analysis for
race detection and enforcement of sequential consistency.

8.1 Application Case Studies
In order to guide the design of the language constructs described in §3 and evaluate their effec-
tiveness, we examined four application benchmarks to determine how they can benefit from the
new hierarchical team constructs. In this section, we present case studies of the four applications,
conjugate gradient, parallel sort, particle in cell, and stencil.

8.1.1 Test Platforms
We tested application performance on three machines, a Cray XT4, a Cray XE6, and an IBM
iDataPlex, all located at the National Energy Research Scientific Computing Center (NERSC)
[75] at the Lawrence Berkeley National Laboratory (Berkeley Lab) [62]. The Cray XT4, named
Franklin, was a cluster of quad-core AMD Budapest 2.3 GHz processors, with one quad-core
processor per node and a SeaStar-2 interconnect. The Cray XE6, called Hopper, consists of two
twelve-core AMD MagnyCours 2.1 GHz processors per node, each of which consists of two six-
core dies. Each die is referred to as a non-uniform memory access (NUMA) node, since each die has
fast access to its own memory banks but slower access to the other banks. The XE6 uses a custom
Gemini interconnect for communication. On both Cray machines, we used the MPI conduit of
GASNet for communication. The IBM iDataPlex system, known as Carver, is a cluster of eight-
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core, 2.67 GHz Intel Nehalem processors connected by a 4X QDR InfiniBand network. We used
the native Infiniband conduit of GASNet for communication on this system. The largest job size on
the iDataPlex is limited to 64 nodes by system policy, though in practice, memory considerations
limited us to 32 nodes for most benchmarks and prevented larger problem sizes from being run.

In most of the benchmark applications, we focused on optimizing distributed performance. As
a result, we used performance on a single shared-memory node or NUMA node as the baseline for
our experiments. Optimizing execution solely on shared-memory multicores is beyond the scope
of this thesis. However, all benchmarks were run with runtime error checking disabled, including
those for dynamic alignment, to avoid any unnecessary overhead.

8.1.2 Conjugate Gradient
The conjugate gradient (CG) application is one of the NAS parallel benchmarks [9]. It iteratively
determines the minimum eigenvalue of a sparse, symmetric, positive-definite matrix. The matrix
is divided in both dimensions, and each thread receives a contiguous block of the matrix, with
threads placed in row-major order. The application performs numerous sparse matrix-vector mul-
tiplications. Consider a blocked matrix-vector multiplication, as illustrated previously in Figure
3.3. Each element in the source vector must be distributed to the threads that own a portion of the
corresponding matrix column. Each element in the destination vector is computed using a reduc-
tion across the threads that own a portion of the corresponding matrix row. Since the algorithm is
iterative, each segment of the result vector must be distributed to those threads that require it in the
next iteration, in which the previous result becomes the new source vector.

8.1.2.1 Original Implementation

Prior to our language extensions, Titanium only supported collectives over all threads in a program.
Thus, the original Titanium implementation of CG [29] required hand-written reductions over
subsets of threads. These reductions required extensive development effort to implement, test,
and optimize. As we discuss in §8.4.1.1, one version of the hand-written code also contains a
significant bug; we use the bug-free version here.

Figure 8.1 shows the execution of the original matrix-vector multiplication in a single iteration
of CG. The implementation performs an all-to-all reduction on each row, so that threads 0 to 3
receive the first half of the result vector and threads 4 to 7 receive the second half. However, in the
next iteration, threads 0 and 4 require the first quarter of that result vector, threads 1 and 5 the next
quarter, and so on. Thus, a partial transpose is required over the threads to transfer data to those
threads that need it. In this example, threads 0, 1, 6, and 7 already have their required data, but
threads 2 and 4 need to swap their results, as do threads 3 and 5.

8.1.2.2 Row Teams

The first step in modifying CG to use teams was to replace the hand-written all-to-all reductions
with built-in reductions on teams. The code already computes the row and column number of each
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Figure 8.1: A single iteration of matrix-vector multiplication in the original and row team versions
of CG.

thread, which we use to divide the threads into row teams with a call to splitTeamAll(). Then in
each matrix-vector multiplication, a single library call is all that is necessary to perform a reduction
across each row team, as shown in the code below.

Team rowTeam = new Team ( ) ;
public void initialize ( ) {

rowTeam .splitTeamAll (rowPos , colPos ) ;
rowTeam .initialize (false ) ;
. . .

}
public void multiply (Vector in , Vector out ) {

. . .
teamsplit (rowTeam ) {

/ / Reduce r e s u l t s o f t h i s row t o a l l t h r e a d s i n t h e row .
Reduce .add (combinedResults , myResults ) ;

}
. . .

}
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Figure 8.2: A single iteration of matrix-vector multiplication in the column team version of CG.

8.1.2.3 Column Teams

The above implementations perform unnecessary communication, since the results of the all-to-all
reductions end up on every thread in a row team before being transposed across columns. In order
to further optimize the code, we replaced the all-to-all reductions with all-to-one reductions, as
shown in Figure 8.2. In this example, only thread 0 receives the result of the reduction in the first
row team, while thread 6 receives the result of the second team. Thread 1 then copies the second
half of thread 0’s result, which is required by the second column of threads, and thread 7 similarly
copies from thread 6. Finally, a broadcast is done in each column, transferring data from thread 0
to 4, thread 1 to 5, thread 6 to 2, and thread 7 to 3.

As before, a team for each row is required to perform the reductions. In addition, a team
for each column is required to perform the broadcasts. Lastly, we construct additional teams to
synchronize the source and destination threads of the copies between the reductions and broadcasts.
The code below demonstrates these operations.

teamsplit (rowTeam ) {
/ / Reduce r e s u l t s o f t h i s row t o a s i n g l e t a r g e t t h r e a d .
Reduce .add (combinedResults , myResults , rowTarget ) ;

}
teamsplit (copyTeam ) {
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if (copySync ) {
/ / S y n c h r o n i z a t i o n i s r e q u i r e d i f t h e s o u r c e and d e s t i n a t i o n
/ / t h r e a d s d i f f e r i n t h e copy below .
Ti .barrier ( ) ;

}
}
if (reduceCopy ) {

/ / Th i s t h r e a d i s r e s p o n s i b l e f o r copy ing d a t a from t h e g i v e n
/ / s o u r c e .
myOut .copy (allResults [reduceSource ] ) ;

}
teamsplit (columnTeam ) {

/ / B r o a d c a s t d a t a from t h e s o u r c e f o r t h i s column .
myOut .vbroadcast (columnSource ) ;

}

8.1.2.4 Performance

The CG application demonstrates the importance of teams for collective operations among subsets
of threads. It also illustrates the need for multiple team hierarchies and for separating team creation
from usage, as the cost for creating teams is amortized over all iterations of the algorithm.

Figures 8.3, 8.4, and 8.5 compare the performance of the three versions of CG on a Cray XT4,
a Cray XE6, and an IBM iDataPlex. We show strong scaling (fixed problem size) results using
two problem sizes, Class B for one to 128 threads and Class D for 128 to 1024 threads. (Both
axes in the figures use logarithmic scale, so ideal scaling would appear as a line on the graphs.) As
expected, the replacement of hand-written reductions with optimized team reductions in the row
teams version improves performance over the original version. The communication optimizations
resulting from the addition of column teams further improves performance, achieving speedups
over the original code of 2.1x for Class B at 128 threads and 1.6x for Class D at 1024 threads on
the XT4. The XE6 shows similar speedups of 1.6x and 1.5x for the same problem sizes and thread
counts. On the IBM iDataPlex, Class B only scales until 64 threads, at which point the column
team version is 2.1x as fast as the original code. Class D achieves a speedup of 1.6x at 256 threads,
at which point the original version stops scaling, and 2.7x at 512 threads.

As for parallel scaling, the column team version achieves a speedup of 26x for Class B on 128
threads over the sequential version on the XT4, 44x on 128 threads on the XE6, and 25x on 64
threads on the iDataPlex. It should be no surprise that the implementation ceases to scale for Class
B, since communication time dominates computation time for this problem size at higher numbers
of threads. For Class D, we achieve a speedup of about 4x on 1024 threads over 128 threads on
both Cray machines and 2x on 512 threads on the IBM machine.
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Figure 8.3: Strong scaling performance of conjugate gradient on a Cray XT4.
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Figure 8.5: Strong scaling performance of conjugate gradient on an IBM iDataPlex.

8.1.2.5 Shared-Memory Optimizations

In addition to rewriting the CG code to use team collectives, we wrote an experimental version
that explores various shared-memory optimizations. In particular, if threads that share memory are
placed in the same column, these threads can share their portion of the input vector. For example,
in Figure 8.2, if threads 0 and 4 share memory, they can use the same result vector rather than
requiring it to be transferred from 0 to 4. There may be more threads in a column than in a shared-
memory node, so column transfers may not be completely eliminated. However, they would only
require a single thread from each node in a column rather than all threads, reducing the amount of
communication.

In implementing this optimization, we first had to divide the matrix among threads in column-
major order, since the Titanium runtime assigns contiguous blocks of thread IDs to each shared-
memory node. Figure 8.6 shows the required layout. Unfortunately, the assumption of row-major
order is pervasive in the code, so directly making this change proved difficult. Instead, we con-
structed a new global team that merely rearranged thread IDs to produce the desired ordering. We
then called the unmodified CG code in the context of this team, as follows:

public static void main (String [ ] args ) {
. . . / / Compute number o f rows and columns .
int id = Ti .thisProc ( ) ;
/ / Compute ID i n column−major team .
id = id / numRows + numCols ∗ (id % numRows ) ;
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Figure 8.6: A single iteration of matrix-vector multiplication in the shared-memory version of CG,
with threads arranged in column-major order.

/ / C o n s t r u c t column−major team .
Team flipTeam = new Team ( ) ;
flipTeam .splitTeamAll ( 0 , id ) ;
flipTeam .initialize (false ) ;
/ / Execu te u n m o d i f i e d CG code i n t h e c o n t e x t o f column−major team .
teamsplit (flipTeam ) {
oldMain (args ) ;

}
}
public static void oldMain (String [ ] args ) {

. . .
}

We then had to divide each column team into subteams of shared-memory threads to allow for
synchronization on their shared piece of the input vector. We also had to construct teams with one
thread from each node in a column in order to perform the broadcasts. The code below constructs
both sets of teams.

teamsplit (columnTeam ) {
/ / D i v id e column team i n t o t h r e a d s t h a t s h a r e memory .
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colSMPTeam = new Team ( ) ;
colSMPTeam .splitTeamSharedMem (id ) ;
/ / D i v id e column team i n t o sub teams wi th one t h r e a d from each
/ / node .
colSliceTeam = colSMPTeam .makeTransposeTeam ( ) ;
colSMPTeam .initialize (false ) ;
colSliceTeam .initialize (false ) ;

}

Unfortunately, we determined that in most cases, the synchronization overhead from sharing
vectors was greater than the time saved by reduced communication in the current version of the
code. Despite the disappointing performance results, this exercise demonstrates the benefits of the
new team constructs in exploring optimizations, and we plan to investigate whether or not further
optimizations can make this version of the code more efficient.

8.1.3 Parallel Sort
The second application we examined was a sorting library that sorts 32-bit integers in parallel. We
postulated that the most efficient implementation would be a hierarchical distributed sort that uses
a communication-optimized algorithm between threads that do not share memory but otherwise
takes advantage of shared memory. We started with two existing implementations, the sequential
quicksort from the java.util.Arrays class in the Java 1.4 library and a distributed sample sort
written in Titanium by Kar Ming Tang.

8.1.3.1 Overview of Sample Sort

In the sample sort algorithm [44], data is initially randomly and evenly distributed among all pro-
cessors. At the end of the algorithm, the elements satisfy two properties: (1) all elements on an
individual processor are in sorted order and (2) all elements on processor i are less than any ele-
ment on processor i+1. The algorithm accomplishes this by first randomly sampling the elements
on each of the n processors, sending them to processor 0. Processor 0 sorts the samples, deter-
mining n− 1 pivots that divide the elements into n approximately equal sets. Each processor then
uses these pivots to divide its elements into n buckets, which are then exchanged among all pro-
cessors to satisfy property (2) above. Then each processor sequentially sorts its resulting elements
to satisfy property (1), and the algorithm terminates.

The bucket exchange operation requires n(n − 1) messages, since each processor must send
n − 1 buckets to a different processor. On a cluster of multiprocessors, however, we speculated
that it would be more efficient to aggregate communication by using only a single bucket for each
node, so that m(m− 1) messages would be required for m nodes. Each node’s data could then be
sorted in parallel by the processors on that node.
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8.1.3.2 Shared-Memory Sort

The original implementation of sample sort treats all threads as if they do not share memory. In
order to remedy this, we first wrote a new sort implementation that assumes that all threads share
memory, relying heavily on the new team constructs in writing the code. This sort does not use
sample sort but a combination of merge sort and quicksort.

The shared-memory algorithm starts with a single, contiguous array of integers. This array is
divided equally among all threads, each of which calls the sequential quicksort to sort its elements
in-place. The separately sorted subsets are then merged in parallel in multiple phases, with the
number of participating threads halved in each stage. Figure 8.7 illustrates this process on four
threads.

The recursive nature of the sorting can be easily represented with a team hierarchy consisting
of a binary tree, in which each node contains half the threads as its parent. The following code
constructs such a hierarchy, using the splitTeam() library function to divide a team in half.

static void divideTeam (Team t ) {
if (t .size ( ) > 1) {

t .splitTeam ( 2 ) ;
divideTeam (t .child ( 0 ) ) ;
divideTeam (t .child ( 1 ) ) ;

}
}

Then each thread walks down to the bottom of the team hierarchy, sequentially sorts its elements,
and then walks back up the hierarchy to perform the merges. In each internal team node, a single
thread merges the results of its two child nodes before execution proceeds to the next level in the
hierarchy. The following code performs the entire algorithm, and Figure 8.8 illustrates the process
on six threads.

static single void sortAndMerge (Team t ) {
if (Ti .numProcs ( ) == 1) {
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allRes [myProc ] = SeqSort .sort (myData ) ;
} else {
teamsplit (t ) {
sortAndMerge (Ti .currentTeam ( ) ) ;

}
Ti .barrier ( ) ; / / e n s u r e p r i o r work c o m p l e t e
if (Ti .thisProc ( ) == 0) {

int otherProc = myProc + t .child ( 0 ) .size ( ) ;
int [1d ] myRes = allRes [myProc ] ;
int [1d ] otherRes = allRes [otherProc ] ;
int [1d ] newRes = target (t .depth ( ) , myRes , otherRes ) ;
allRes [myProc ] = merge (myRes , otherRes , newRes ) ;

}
}

}

As illustrated in the code above, the shared-memory sorting algorithm is very simple to imple-
ment using the new team constructs. The entire implementation is only about 90 lines of code (not
including test code and the sequential quicksort) and took just two hours to write and test.

8.1.3.3 Distributed Sort

As an initial hierarchical, distributed sort implementation, we started with an unoptimized sample-
sort implementation written by Kar Ming Tang in 1999. Our initial implementation assigns a
single thread from each node to participate in the sample sort, so that the number of messages is
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Figure 8.9: Performance of initial distributed sort on a Cray XT4 with a constant number of ele-
ments per thread.

minimized as described previously. Then each node performs the shared-memory sort described
above. The entire code to accomplish this is as follows:

Team team = Ti .defaultTeam ( ) ;
team .initialize (false ) ;
Team oTeam = team .makeTransposeTeam ( ) ;
oTeam .initialize (false ) ;
partition (oTeam ) {
{ sampleSort ( ) ; }

}
teamsplit (team ) {

keys = SMPSort .parallelSort (keys ) ;
}

Again, the new team constructs make this algorithm trivial to implement, requiring only 10 lines
of code and 5 minutes of development time. The code calls Ti.defaultTeam() to obtain a
team in which threads are divided according to which threads share memory. It then uses the
makeTransposeTeam() library call to construct a transpose team in which each subteam contains
one thread from each node. The partition construct is then used to perform the sample sort on
one of those subteams, after which the node teams execute the shared-memory sort.

This example illustrates the value of the composability features of the team extensions. As far
as the code in sampleSort() is concerned, its entire world consists of just a single thread from
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Figure 8.10: Performance of optimized distributed sort on a Cray XT4 with a constant number of
elements per thread.

each node. The only change required was to remove the call to sequential sort after the sampling
and distribution. Similarly, as far as the shared-memory sort is concerned, its entire world consists
of the threads on a single node. No changes were required, and the team hierarchy constructed in
the shared-memory sort composes cleanly with the hierarchy used here.

Figure 8.9 illustrates the performance of this initial implementation on a Cray XT4 compared
to a pure sample sort, with a constant number of elements per thread. Sorting takes longer in the
mixed, hierarchical version, since it is done in parallel, with threads idling in the merge phases.
However, the distribution portion of the algorithm takes approximately the same time in both ver-
sions at 8 nodes. We speculated that the distribution time in the mixed version would take less time
than the pure version at larger numbers of nodes.

The initial implementation does not scale beyond 8 nodes in either the pure sample sort or the
mixed, hierarchical version, so we completely reimplemented the sample sort. We omit the details
here, but the new version uses all threads to help with sampling and distribution rather than a single
thread per node in the mixed version of the code. Communication, however, is still aggregated at
the node level to minimize the number of messages required. Figures 8.10 and 8.11 compare the
performance of pure sample sort and mixed, hierarchical sample and shared-memory sort, with
both versions using the new sample and distribution code. On the Cray XE6, we used a single
Unix process per NUMA node, since its non-uniform memory access makes it inefficient to rely
on shared memory between NUMA nodes. On both machines, the gap in distribution time between
the pure and mixed versions grows as the number of threads increases, resulting in a speedup of
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Figure 8.11: Performance of optimized distributed sort on a Cray XE6 with a constant number of
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Figure 8.13: Distribution time on a Cray XE6 when using a single thread per team for communi-
cation versus all threads in a team.

1.4x for the mixed version over the pure version on both 512 nodes (2048 cores) of the XT4 and
512 NUMA nodes (3072 cores) of the XE6. Figure 8.12 shows performance on the IBM iDataPlex
with a smaller problem size, demonstrating similar results as the Cray machines. At 32 nodes (256
cores), the hierarchical version runs about 1.2x as fast as pure sample sort.

As for overall scaling of the algorithm, since the number of elements per node is constant, we
expect the sorting phase to remain constant over all numbers of threads, as is the case for both
implementations. The distribution phase is dominated by the bucket exchange operation described
in §8.1.3.1. While the amount of communication per thread remains constant, the total amount of
communication increases linearly and the number of messages increases quadratically, accounting
for the increase in distribution time at higher numbers of threads. Sorting in general is not a linear
time algorithm, so given that the amount of data per thread is constant, we expect the total time to
increase as the number of threads increases.

8.1.3.4 Discussion

The hierarchical, mixed version of sorting that we implemented above aggregates communication
between teams, resulting in lower communication costs than the pure sample sort. An impor-
tant feature of the hierarchical algorithm is that it uses all threads to perform communication in
the distribution phase. This is in contrast to a hierarchical sort using the conventional method of
mixing MPI with shared-memory parallelism. In the latter, one MPI thread is generally used in
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Figure 8.14: Orthographic projection of the heart model. Only a tenth of the fibers are shown for
clarity.

Input Fluid Cells Particles
Heart 2.10M 606K

2563 Sphere 16.8 M 1.74M
5123 Torus 134M 5.53M
5123 Sphere 134M 7.58M

Table 8.1: Fluid size and number of particles for each particle in cell input.

each shared-memory domain to perform communication between domains, while multiple threads
are used for computation. In order to demonstrate the benefit of using multiple threads for com-
munication, we created a new version of our hierarchical sort that uses only a single thread for
communication in each shared-memory team. Figure 8.13 compares its distribution time on the
Cray XE6 to the version that uses multiple threads, showing that the latter is more than twice as
fast as the former at larger thread counts. This demonstrates that a unified hierarchical model of
parallelism can provide better performance than one that mixes a distributed model with a shared-
memory model.
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Figure 8.15: Sample input sphere, distributed across eight threads.

Figure 8.16: Sample input torus, distributed across eight threads.
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8.1.4 Particle in Cell
The particle in cell benchmark is inspired by a heart simulation written in Titanium [71, 107, 72].
This simulation uses the immersed boundary method [70] to simulate a heartbeat. The heart is
modeled as a set of fibers, consisting of multiple connected fiber points, immersed in a discrete
fluid grid, with the fluid cells representing velocity, force, and pressure fields. The simulation is
composed of multiple timesteps, each of which consists of the following phases:

1. Fiber-fiber interaction. New force values are calculated at each fiber point to represent the
contraction of heart muscles.

2. Fiber-fluid interaction. Fiber points transfer force to the fluid grid.

3. Fluid-fluid interaction. Local forces are used to calculate the velocity of each cell, using
the Navier-Stokes equation for incompressible fluids.

4. Fluid-fiber interaction. The velocity of each fiber point is calculated from the velocity of
the underlying fluid grid, and each point is moved into its new position.

In the particle in cell benchmark, we are concerned with the second phase, where fiber points
transfer values to the fluid grid. Thus, the benchmark contains a set of particles, corresponding
to fiber points, and a set of cells, corresponding to the fluid grid. In each iteration, a force value
is transferred from each particle to the cell that contains it. Our primary goal is to optimize the
communication algorithm in order to reduce running time.

8.1.4.1 Algorithm Overview

Since we are modeling a phase of the heart simulation, we take care to be as true to the heart
simulation as possible, starting with the inputs. Figure 8.14 shows the actual heart model used in
the simulation. It consists of approximately two million fiber points in a 1283 fluid grid. Since the
model is a fixed size, various synthetic inputs have also been used, such as spheres and tori. Figure
8.15 shows a sample input sphere, and Figure 8.16 shows a sample input torus. The actual inputs
we use are a 2563 sphere, a 5123 torus, and a 5123 sphere. Table 8.1 compares their sizes with that
of the heart model.

The inputs all share an important characteristic: they are all surfaces embedded in a three-
dimensional fluid. As such, there is a lot of space empty of particles, so most fluid cells contain
no particles. The third phase of the heart simulation relies on a regularly partitioned fluid grid1 for
load balance, so we cannot simply place particles on the thread that owns their underlying cells.
(The particles also move in the heart simulation, but slowly enough so that re-balancing load can be
amortized over many iterations. As a result, we ignore particle movement.) The heart simulation
uses KMETIS [59] to partition fiber points, with a cost model that takes into account the locality

1The current heart implementation uses a one-dimensional fluid partition. However, there is no inherent reason
why it cannot use a two- or three- dimensional partition, so we use a three-dimensional partition to allow the code to
run on more threads than the number of cells in one dimension.
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Figure 8.17: Two-dimensional example of a bounding box containing all of a thread’s particles.

required in all phases of the simulation. We use the same partitions in our experiments. Figures
8.15 and 8.16 show examples of particle and fluid partitions for eight threads.

Although we attempt to accurately model the heart simulation, we have made a few changes
in the interests of simplicity. The most significant change is the number of cells with which each
particle interacts. In the actual heart simulation, each fiber point affects force values on each cell
in a 4x4x4 grid surrounding the point, for a total of 64 cells. In our benchmark, on the other
hand, each particle interacts with only a single cell. This reduces the computational load by a
large margin while having only a minor effect on the amount of communication. Since our goal
is to optimize communication, the reduction in computation makes this a good benchmark for the
communication pattern in the original code, and it does not change the code substantially enough
to affect expressiveness.

We also do not include operations that can be amortized over many iterations in the timed
portion of the benchmark. These include load balancing, computing target fluid cells, and particle
sorting. We do, however, use a two-phase communication algorithm, in which a pointer to target
cells is sent to each target processor in every iteration. Particle movement cannot be predicted
with certainty, so recomputing target fluid cells cannot be done after a fixed number of iterations.
Instead, we send target cell pointers in each iteration, after which the target processor copies the
data locally. Other, more complicated algorithms may be possible, but we do not explore them
here.

Multiple particles can be located in each fluid cell, and these particles can be located on dif-
ferent processors. As such, updates to each fluid cell must be synchronized. We use the update-
by-owner model [94], in which the owner of each fluid cell processes updates to that cell. On
each thread, particles update local copies of their target cells. Each target cell is then sent to the
thread that owns it, which updates the canonical version of that cell. This scheme involves reorder-
ing particle updates; updates are associative and commutative, modulo floating-point precision, so
reordering is valid.
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Figure 8.18: Performance of flat particle in cell using shared-memory threads on a NUMA node
versus processes that do not share memory.

The main data structures in the benchmark include an array of points on each thread, two copies
of the fluid cells that the thread owns, and two copies of the target fluid cells underlying the thread’s
points. The latter consist of a cubic three-dimensional bounding box, similar to the square two-
dimensional box pictured in Figure 8.17. The intersection of this bounding box with the portion of
the fluid grid owned by each thread is communicated in each iteration of the algorithm. Titanium’s
powerful array library allows these intersections to be computed trivially and provides a simple
mechanism for constructing a view of a subset of an array. Using these array views, the bounding
box data structure itself is restricted to produce the required data structures for communication,
resulting in no extra memory usage aside from array descriptors.

The timed portion of the resulting algorithm consists of multiple iterations of the following
steps on each thread.

1. Clear target fluid cells (i.e. the bounding box).

2. Process particles, updating target fluid cells.

3. Send pointers to target-fluid subarrays to the other threads.

4. Barrier synchronization to ensure previous steps are completed on all threads.
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5. Copy incoming fluid subarrays locally and process updates to fluid owned by this thread.
Non-blocking communication is used to overlap communication with computation and other
communication.

6. Swap duplicated data structures.

We refer to our implementation of this algorithm as the flat version, since it contains no shared-
memory optimizations.

Figure 8.18 shows the execution time of the flat algorithm on a Cray XE6 with a 2563 sphere
as input. The code was run with each thread in its own Unix process, so that no threads share
memory, labeled as threads in the figure. We also ran with one Unix process per NUMA node,
labeled as processes, so that groups of six threads share memory. The latter performs significantly
worse than the former, twice as slow on average, since our runtime layer is not optimized for shared
memory. This illustrates the gap that any shared-memory optimizations must overcome in order to
be effective.

The third version in Figure 8.18, processes+bbox, is also run with one thread per process, but
it includes a bounding box optimization. Instead of computing a single cubic bounding box for all
points owned by a thread, we compute separate cubic bounding boxes for each target thread, rep-
resented in two dimensions by the light green area in Figure 8.17. This decreases communication
volume, resulting in significant performance benefits. All three versions cease scaling beyond 16
NUMA nodes.

8.1.4.2 Hierarchical Optimizations

Starting from the flat algorithm without the bounding box optimization, we wrote hierarchical
versions to take advantage of shared memory. Each set of threads that share memory is placed
into its own teams, and all of our hierarchical versions partition the particles and fluid grid by the
number of teams, rather than the total number of processors.

Our initial version, referred to as replicated in Figure 8.19, replicates a team’s portion of its
fluid grid as well as its target fluid cells on all threads in the team. It also distributes the team’s
particles randomly to its threads. In step 2 of the algorithm, the threads update their own target fluid
copies with their particles, after which a reduction is performed to combine their target fluid grids.
A single thread from the team then sends pointers to the combined target grids to the other teams
in step 3. After the barrier synchronization, that same thread launches non-blocking copies in step
5. These copies are then split among all threads in the team, which wait for them to complete and
update their own fluid cells. The fluid grids are then combined using a final reduction.

A second version, which we refer to as split, evenly divides the fluid grid across a team’s
threads. Target fluid cells are still replicated. Now in step 5, all threads process all incoming target
fluid cells, updating only the portion of the fluid grid that they own. This eliminates the reduction
in that step, somewhat improving performance.

In order to eliminate the reduction in step 2, we needed to divide a team’s target-fluid grid
among its threads. This in turn requires avoiding overlap between the underlying fluid cells of
each thread’s particles. We thus sort a team’s particles by position before dividing them evenly
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Figure 8.19: Performance of various hierarchical particle in cell algorithms on a Cray XE6.
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Figure 8.20: Performance of various hierarchical particle in cell algorithms on an IBM iDataPlex.
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Figure 8.21: Performance of a 2563 sphere on a Cray XE6 using the best hierarchical particle in
cell algorithm versus the best flat algorithm.

among the threads. Now at most one target fluid cell on each thread can overlap another thread’s
target grid. We assign such a cell to the lowest ID thread that has particles that update that cell and
use update-by-owner to combine updates to the cell. We call the resulting algorithm sorted, and it
significantly improves performance over the split version. We have found sorting overhead to be
very low, averaging around 5% of execution time when sorting every 100 timesteps. This is with
an unoptimized, sequential sort, and we believe that the overhead can be further reduced using a
tuned parallel sort.

Our next version, sorted+bbox, applies the bounding box optimization described in the flat
case. This also results in a significant performance benefit.

The final optimization we applied was to use all of a team’s threads to send pointers in step
3 and to launch non-blocking copies in step 5. The latter can involve packing operations, so
parallelizing them can improve performance. Figure 8.19 shows that the resulting code, labeled
sorted+bbox+all, provides similar performance as the previous version on the Cray XE6. On the
other hand, it provides significantly better performance on the IBM iDataPlex, as shown in Figure
8.20.

Figure 8.21 compares performance of the best flat algorithm to the best hierarchical algorithm
on the Cray XE6, with a 2563 sphere as input, and Figure 8.22 shows performance on the IBM
iDataPlex. The flat algorithm does not scale beyond 16 nodes on the Cray machine and 8 nodes
on the IBM machine, while the hierarchical algorithm scales up to 128 and 32 nodes, respectively.
On the other hand, the flat algorithm performs about twice as fast as the hierarchical version up to
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Figure 8.22: Performance of a 2563 sphere on an IBM iDataPlex using the best hierarchical particle
in cell algorithm versus the best flat algorithm.
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Figure 8.23: Performance of a 5123 torus on a Cray XE6 using the best hierarchical particle in cell
algorithm versus the best flat algorithm.
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Figure 8.24: Performance of a 5123 sphere on a Cray XE6 using the best hierarchical particle in
cell algorithm versus the best flat algorithm.

the former’s scaling limits. The hierarchical algorithm requires four times as many processors to
improve running time beyond the best performance of the flat algorithm.

Figures 8.23 and 8.24 show performance on the Cray machine with the 5123 torus and 5123

sphere2. They demonstrate similar results as the 2563 sphere.

8.1.4.3 Discussion

The particle in cell benchmark proved to be a less than ideal candidate for hierarchical optimiza-
tions. Below the scaling limit for the flat version, the hierarchical optimizations were unable to
overcome the performance gap of shared memory shown in Figure 8.18. The primary reason for
this is that the benchmark overlaps communication with communication and computation, reduc-
ing the actual cost of communication to overall running time. Above the flat scaling limit, both
communication volume and computation time decrease to the point where overlapping is no longer
sufficient. It is only here that hierarchical optimizations improve performance, although at a sig-
nificant programming cost.
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Figure 8.25: A five-point stencil in two dimensions. The ghost zones of the node that owns the top
left portion of the grid are in light green.

8.1.5 Stencil
A stencil is a nearest-neighbor computation over a structured n-dimensional grid. Stencils are
generally used to numerically solve partial differential equations and consist of multiple iterations
in which the value of each grid point is updated as a function of its previous value and those of its
neighboring points. Figure 8.25 illustrates a five-point stencil on a two-dimensional grid.

In this benchmark, we examine a seven-point stencil in three dimensions, the three-dimensional
analogue of the five-point stencil pictured in Figure 8.25. The stencil we use is an abstraction of
that used to solve the heat equation,

∂u

∂t
= α

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

with fixed boundary conditions at the edges of the grid. We use the Jacobi iteration strategy, in
which there are two copies of the grid. In each iteration, one grid is read from and the other is
written to. As such, this is an out-of-place computation.

A wide variety of work has been done to optimize stencil computations on shared-memory
multiprocessors, including communication-avoiding optimizations [69, 105], auto-tuners [27, 56],
standalone domain-specific compilers [97], and embedded domain-specific compilers [20, 55, 58].
Rather than reproduce this body of work, we wish to take advantage of existing libraries in order
to perform the shared-memory portion of the stencil computation.

We thus partition the grid among shared-memory nodes or NUMA nodes. As shown in Figure
8.25, points at the edge of a node’s partition depend on points on other nodes; we refer to the set of
required points on each neighboring node as a ghost zone. Each node has at most six ghost zones,
one in each direction in three-dimensional space, and ghost zones must be communicated between
nodes after each iteration. In a seven point stencil, all ghost zones can be transferred in parallel, so
we overlap ghost-zone communication on each node.

2Due to memory constraints, we were unable to run these problem sizes on the IBM machine.
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In our stencil implementation, we use Titanium to perform all inter-node communication but
use an external library to perform the on-node, shared-memory computation. Since those libraries
have their own tuning frameworks, we are interested only in optimizing performance of the Tita-
nium benchmark, independent of the performance of the external libraries. As such, we use naı̈ve,
untuned versions of the external code for simplicity.

For each external library, we compare three versions of the Titanium code:

• seq+lib: A single Titanium thread is used on each node, while multiple threads are used in
the external library. This is similar to the common case of mixed MPI and shared-memory
parallelism, where a single MPI process is used on each node.

• par+lib: Multiple Titanium threads are used on each node, but only one is used for com-
munication, while the external library uses multiple threads. This strategy may be used as
part of a larger distributed application, as it is simpler than using multiple threads for com-
munication. It also demonstrates any overhead from using multiple Titanium threads on a
node.

• par+lib+all: Multiple Titanium threads are used on each node for communication, and the
external library also uses multiple threads. This is a true hierarchical version of the bench-
mark, as it takes advantage of all available parallelism.

We use both an OpenMP [80] stencil library and one that uses POSIX threads (Pthreads).

8.1.5.1 OpenMP

The OpenMP library we use is an OpenMP version of the Stencil Probe microbenchmark [93, 57,
30]. Since on-node parallelism is handled by the OpenMP compiler and runtime, we call the library
from a single Titanium thread on each node, even if there are multiple Titanium threads on each
node. The par+omp and par+omp+all versions of the code therefore use two team hierarchies, one
that divides the threads into shared-memory teams, and another that divides them into teams with
one thread from each node, as in §8.1.3.3:

Team team = Ti .defaultTeam ( ) ;
team .initialize (false ) ;
Team oTeam = team .makeTransposeTeam ( ) ;
oTeam .initialize (false ) ;

The structure of the stencil computation is then as follows:

1 for (int i = 0 ; i < numIter ; i++) {
2 / / copy g h o s t zones
3 . . .
4 / / c a l l e x t e r n a l l i b r a r y
5 partition (oTeam ) {
6 { stencilOMP (gridA , gridB , dimx , dimy , dimz ) ; }
7 }
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Figure 8.26: Weak scaling performance of stencil on a Cray XE6 using OpenMP for shared-
memory parallelism.

8 / / w a i t f o r l o c a l c o m p u t a t i o n t o f i n i s h
9 teamsplit (smpTeam ) {

10 Ti .barrier ( ) ;
11 }
12 / / swap p o i n t e r s
13 . . .
14 }

In each iteration, ghost zones are first copied. Then one thread from each shared-memory node
calls the external OpenMP library, while the other threads wait on a node-local barrier. Finally, the
data structures are swapped for use in the next iteration.

As the above code demonstrates, team constructs facilitate composition with external libraries.
However, the interaction between Titanium’s shared-memory threading, which is built on Pthreads,
and OpenMP results in a significant performance degradation. Figure 8.26 shows weak scaling
(constant problem size per thread) performance of the three code variants on a Cray XE6, with 2563

points per NUMA node. The gap between seq+omp and par+omp demonstrates the performance
hit from mixing Pthreads and OpenMP. We tested two implementations of the local barrier in line
10 above, one based on mutexes and another that uses Pthread barriers. Both resulted in the same
performance on the Cray XE6.

Figure 8.27 shows performance of the stencil variants on an IBM iDataPlex, demonstrating an
even larger gap between code that mixes Pthreads with OpenMP and code that does not. The results
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Figure 8.27: Weak scaling performance of stencil on an IBM iDataPlex using OpenMP for shared-
memory parallelism.

shown are for a barrier implementation that uses Pthread barriers; the mutex implementation was
an order of magnitude worse on this platform.

While the interaction between Pthreads and OpenMP results in poor overall performance, the
results do demonstrate that a hierarchical stencil code, one that uses multiple threads for communi-
cation on each node, results in better performance than a flat version that uses only a single thread
per node. We believe that a port of Titanium to the Lithe runtime [83, 82, 81] would eliminate the
performance penalty from mixing Pthreads and OpenMP, resulting in the hierarchical par+omp+all
version running faster than the seq+omp variant.

8.1.5.2 POSIX Threads

Since Titanium uses POSIX threads, or Pthreads, for shared-memory parallelism, the combination
of Titanium with a Pthreads stencil library should not result in the slowdowns experienced in the
OpenMP case. We use code generated from an auto-tuner written by Kaushik Datta [27]. Unlike
in the OpenMP implementation, the par+pthread and par+pthread+all variants here share threads
between Titanium and the external library. Thus, all threads call into the stencil library, passing
their thread ids and the number of threads in the team as arguments. The code then is as follows:

1 for (int i = 0 ; i < numIter ; i++) {
2 / / copy g h o s t zones
3 . . .
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Figure 8.28: Weak scaling performance of stencil on a Cray XE6 using Pthreads for shared-
memory parallelism.

4 teamsplit (smpTeam ) {
5 / / c a l l e x t e r n a l l i b r a r y
6 stencilPthread (gridA , gridB , dimx , dimy , dimz ,
7 Ti .thisProc ( ) , Ti .numProcs ( ) ) ;
8 / / w a i t f o r l o c a l c o m p u t a t i o n t o f i n i s h
9 Ti .barrier ( ) ;

10 }
11 / / swap p o i n t e r s
12 . . .
13 }

Team constructs help mainly in keeping track of which threads share memory, as well as providing
local collective operations such as barriers.

Figures 8.28 and 8.29 show weak scaling performance of the stencil variants on a Cray XE6
and an IBM iDataPlex, respectively. The gap between the seq+pthread and the other versions at
lower node counts on the IBM iDataPlex is due to overhead in the Titanium runtime system, as
described in §8.1.4. On both machines, the hierarchical par+pthread+all version outperforms the
other two variants at higher node counts, demonstrating the performance benefits of hierarchical
code. It improves performance over seq+pthread by up to 7% on the Cray machine and 14% on
the iDataPlex.
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Figure 8.29: Weak scaling performance of stencil on an IBM iDataPlex using Pthreads for shared-
memory parallelism.

In both the Pthread implementation here and the OpenMP implementation above, the hierarchi-
cal par+lib+all variants only perform better than the par+lib variants on node counts greater than
four. This is due to the fact that at lower node counts, each node only has at most two neighboring
nodes, providing less opportunity for parallelizing communication. Also, we overlap communi-
cation with communication in all variants, so the main benefit from using multiple threads for
communication is to parallelize the packing of data required before each transfer. Despite this
limited opportunity for parallelization, the hierarchical versions still perform better than the flat
par+lib variants.

8.2 Dynamic Alignment of Collectives
We have verified on many different test cases that the dynamic enforcement system does detect
alignment errors in practice without requiring any programmer annotations. Consider the following
program, reproduced from §4.2.2.

5 if (Ti .thisProc ( ) == 0) {
6 fakeBarrier ( ) ;
7 } else {
8 fakeBarrier ( ) ;
9 }
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10 Ti .barrier ( ) ;

Upon running this code, the following error is produced under strict alignment in debugging mode
in addition to the usual Java-like stack trace:

ti.lang.Alignment.AlignmentError: collective alignment
failed on processor 1 at foo.java:10:8
last location: else branch at foo.java:5:12
last location on processor 0: then branch at foo.java:5:12
previous location: none

The error message directs the user to the exact location that caused alignment to fail, instead of
just providing the location of the misaligned collective itself.

Since Titanium currently enforces alignment statically, no Titanium application has alignment
errors, and we could not test its effectiveness on real-world programs. However, we were able
to determine the performance cost of dynamic checking on two platforms: an eight-core (two-
processor, four-core) Intel Xeon E5435 shared-memory multiprocessor (SMP) and Jacquard, a
cluster at NERSC that consisted of dual-processor 2.2GHz Opteron nodes with an InfiniBand in-
terconnect.

Five program versions were compared:

• static: no dynamic checking

• strict: strict alignment scheme, default mode with no execution history list

• strict/debug: strict alignment scheme, debugging mode with execution history list

• weak: weak alignment scheme, default mode with no execution history list

• weak/debug: weak alignment scheme, debugging mode with execution history list

8.2.1 Collective Performance
We first tested the performance of three of the primitive collectives by repeatedly invoking them
inside a loop. For the dynamic alignment schemes, a single loop iteration includes an update to
the execution hash (and list for the debugging modes), and for the broadcast test, an additional
execution hash/list update for the source thread of the broadcast. Each loop iteration also includes
the hash comparison code associated with a collective operation, which consists of a broadcast,
comparison, and conditional.

Figure 8.30 shows the relative loop iteration time for the broadcast, barrier, and exchange tests
on the SMP machine for up to 8 processors. The broadcast is of a single 32-bit integer, and the
exchange is of 32-bit integers among all threads. On average, barriers in the dynamic schemes
take about 2.7 times as long as the static version, broadcasts take 2.5 times as long, and exchanges
70% longer. The dynamic debugging versions consistently were slower than the default dynamic
versions by an average of about 20%.
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Figure 8.30: Relative collective performance on the SMP machine.
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Figure 8.32: Relative collective performance on the cluster machine.

Figure 8.31 shows the loop iteration times for each collective in the static case on the cluster
machine for up to 32 processors, and Figure 8.32 shows the dynamic times relative to the static
time. The broadcast and exchange are as in the SMP case. The jump in barrier time at four
processors is due to it being the fewest number of processors to require inter-node communication.
On average, barriers in the dynamic schemes take about three times as long as the static version,
broadcasts take twice as long, and exchanges 40% longer. There is little discernible difference
between the various dynamic versions.

On both machines, the overhead of dynamic checking decreases for each collective operation
as the number of processors increases. In particular, the cost of an unchecked broadcast trends to
about half that of a barrier on the cluster machine and becomes negligible compared to the cost of
an exchange. Since checked operations include an extra broadcast, we expect that for a large num-
ber of processors, 32-bit broadcasts would take twice as long with dynamic checking compared
to static, barriers would take 1.5 times as long, and 32-bit exchanges would take about the same
amount of time. Since the overhead of checking is constant for a given number of processors, we
expect larger collective operations, such as multiword or vector broadcasts, to demonstrate even
smaller slowdowns.

8.2.2 Application Performance
We also tested three of the NAS Parallel Benchmarks [9] in Titanium [29, 28]: conjugate gradient
(CG), Fourier transform (FT), and multigrid (MG). (We use a version of CG without teams here
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Figure 8.33: Relative application performance on the cluster machine.

and in the following sections. See §8.4.1.1 for more details.) Due to memory constraints, the
three benchmarks used class B, A, and B sized problems, respectively, though the parameters were
tweaked to increase running time.

In general, parallel applications do not perform collectives in their inner, compute-intensive
loops, nor do such loops tend to have global effects. Thus, even though collectives are slower
under dynamic alignment and tracking operations have some additional cost, we expect them to be
executed rarely and do not expect them to drastically affect application performance. Figure 8.31
shows the running time for the NAS Parallel Benchmarks on the cluster machine in the static case
for up to 32 processors. Figure 8.33 shows the relative dynamic times, demonstrating that for these
applications, the dynamic checks have no effect on performance. The same results also occurred
on the SMP, though the graphs have been omitted for brevity.

8.2.2.1 Analysis

In order to understand why dynamic checking does not appear to significantly affect application
performance, we ran experiments to determine how much impact it should have. In Table 8.2, we
report the amount of time it takes for each alignment operation on the two machines, including the
time to update the alignment hash, the time to update the history and hash in debugging mode, the
time to perform a history save and restore pair for weak alignment, and the time to perform a hash
check. The latter varies depending on the number of processors, so we report the maximum time
on all processor counts we tested.
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Operation SMP Time Cluster Time
Update 4.0 ns 12.8 ns

Debug Update 31.4 ns 152.3 ns
Save/Restore 10.3 ns 87.2 ns
Max Check 1.6 µs 47.5 µs

Table 8.2: Time for alignment update and check operations on each machine.

Operation Count Max Total Time
Updates Saves/Restores Checks SMP Cluster

CG 1844 924 2729 4.4 ms 0.13 s
FT 1835 1216 1218 2.0 ms 0.05 s
MG 100530 69248 28320 48.9 ms 1.37 s

Table 8.3: Number of operations and calculated overhead for each benchmark.

Table 8.3 shows the number of times each operation occurs in each benchmark. Using these
numbers and the times from Table 8.2, we conservatively estimate the maximum effect on running
time for each machine. The worst case is 1.37 seconds for the multigrid application on the cluster,
which is less than 5% of total running time on 32 processors. The results in Figure 8.33 show that
the actual effect is even less than this.

In general, most applications try to avoid collectives since they limit scalability. As a result,
they would not be affected much by the overhead of dynamic checking at each collective. Appli-
cations that spend a significant fraction of their time in small collectives can expect this portion of
their execution time to as much as double for large numbers of processors, as we argued in §8.2.1.
If this cost is too high, users can turn of checking as noted in §4.2.3. In addition, the optimizations
described in §4.2.2.1 should significantly reduce the performance impact of dynamic checking.

We also determined how much space the execution history list uses in debugging mode. Since
entries are cleared from the list at each collective, the number of entries in the list when performing
a collective is equal to the number of control-flow decisions that affect execution of the collective
since the previous collective executed. We expect this number to be relatively small and the exe-
cution history to use little space as a result. Our tests showed that the space used on each thread
was 0.8 KB. 0.3 KB, and 90 KB for CG, FT, and MG, respectively, matching our expectations.

8.3 Pointer Analysis
The pointer information computed in §6 can be applied to multiple analyses and optimizations for
parallel programs. In this section, we take a look at two clients, locality inference and sharing
inference, and the effect of pointer analysis on them. Both applications are compared to existing
constraint-based inferences on the set of benchmarks below. The constraint-based implementations
do not distinguish between allocation sites, so the pointer-based implementations should perform
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Figure 8.34: Locality inference results for some Titanium programs.

better at maximum precision. This advantage would disappear were the constraint-based imple-
mentations modified to separate allocation sites.

We use the following benchmarks to evaluate our analysis:

• AMR [103] (7581 lines): Titanium implementation of the Chombo adaptive mesh refine-
ment suite [7].

• Gas [10] (8841 lines): Hyperbolic solver for a gas-dynamics problem in computational fluid
dynamics using adaptive mesh refinement, by Peter McQuorquodale and Phillip Collela.

• CG (1595 lines): NAS conjugate gradient benchmark in Titanium.

• FT (1192 lines): NAS Fourier transform benchmark in Titanium.

• MG (1952 lines): NAS multigrid benchmark in Titanium.

The line counts for the above benchmarks underestimate the amount of code actually analyzed,
since all reachable code in the 37,000 line Titanium and Java 1.0 libraries is also processed.

8.3.1 Locality Inference
Pointer information can be used to infer the minimal width of a particular reference or expression.
In particular, if an expression e of reference type evaluates to the abstract set S, then its minimal
width is:
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Figure 8.35: Sharing inference results for some Titanium programs.

wmin = max{n | ∃a = (l, n) ∈ S}

A reference is local if it can only be to the same physical address space as the source thread. In
the two-level pointer analysis, a reference is local if its minimal width is 1, while in the three-level
analysis, it is local if its minimal width is 2.

We have implemented locality inference using pointer analysis in the Titanium compiler. Fig-
ure 8.34 compares the precision of this inference to Liblit and Aiken’s constraint-based local qual-
ification inference (LQI) [65] on the reachable local variables, fields, and method parameters and
return values of reference type in the application code. Since the pointer analysis distinguishes be-
tween allocation sites, the three-level pointer analysis versions perform better than LQI. In most of
the benchmarks, the two-level analysis performs worse than LQI, since it cannot take into account
casts to local, which are used often in the benchmarks to manually eliminate runtime locality
checks.

8.3.2 Sharing Inference
An object in a parallel program is private if it is never leaked beyond its source thread. A reference
is private if it can only refer to private objects. As described in §6.8.2.2, our pointer analysis
implementation only creates wide versions of an abstract location if that location can be leaked.
Thus, an abstract location is private if it has no wide counterparts, and a variable or expression
is private if it evaluates to an abstract set that only contains private locations. This inference is
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Figure 8.36: Analysis running time results for some Titanium programs, using various levels of
pointer analysis.

independent of the number of levels in the analysis hierarchy, as long as at least level 1 is separate
from the rest of the levels.

We have implemented data-sharing inference in the Titanium compiler using pointer analysis.
The precision of this inference compared to Liblit, Aiken, and Yelick’s constraint-based sharing
qualification inference (SQI) [66] is shown in Figure 8.35. As with locality inference, results are
only reported for reachable local variables, fields, and method parameters and return values of
reference type in the application code. Again, the pointer analysis version does considerably better
than the constraint-based version, since it separates allocation sites.

8.3.3 Performance
Though our implementation is not as optimized as possible, its performance still demonstrates
some interesting results. Figure 8.36 shows the running time of various levels of pointer analysis
on a 2.93 GHz Core i7 machine, with and without the lazy analysis optimization described in
§6.8.2.1. The optimization is very effective, decreasing execution time by an average of almost
85% for the benchmarks above. The performance difference between one, two, and three levels of
hierarchy is nonexistent, with all three averaging 0.56 seconds for the same set of programs using
the lazy analysis optimization. This validates our decision to allow an arbitrary number of levels in
the analysis, since execution time would increase linearly with the number of levels if a two-level
analysis was used multiple times instead.
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Figure 8.37: Number of data races detected at compile-time.

8.4 Combined Analyses
We evaluate the combination of our pointer and concurrency analyses using two clients: static race
detection and enforcing sequential consistency at the language/compiler level. We use the same
set of benchmarks as in §8.3 for our evaluation.

8.4.1 Static Race Detection
Using our concurrency and pointer analyses, we built a compile-time data race analysis into the
Titanium compiler. Static information is generally not enough to determine with certainty that two
memory accesses compose a race, so nearly all reported races are false positives. (The correct-
ness of the concurrency and pointer analyses ensure that no false negatives occur.) We therefore
consider a race detector that reports the fewest races to be the most effective.

Figure 8.37 compares the effectiveness of five levels of race detection:

• sharing: Type-based alias analysis and Liblit and Aiken’s constraint-based sharing inference
[66] are used to detect potential races.

• concur: Our basic concurrency analysis (§7.1.2) is used to eliminate non-concurrent races.

• feasible: Our feasible-paths concurrency analysis (§7.1.3) is used to eliminate non-concurrent
races.
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• feasible+PA1: A single-level pointer analysis is used to eliminate false aliases.

• feasible+PA3: A three-level pointer analysis is used to eliminate false aliases.

The results show that the concurrency and pointer analyses can eliminate most of the races
reported by our detector. None of the benchmarks benefit significantly from the basic concurrency
analysis, but the feasible-paths version significantly reduces the number of races found in two of
the benchmarks. The addition of pointer analysis removes most of the remaining races, with a
three-level analysis providing significant benefits over a one-level analysis. The small number of
remaining potential races allowed us to find an actual bug in the conjugate gradient application.

8.4.1.1 Discussion of Conjugate Gradient

In §8.2, §8.3, and §8.4.1, we used a version of the conjugate gradient benchmark that predates the
addition of teams. As noted in §8.1.2, this version uses hand-written reductions over matrix rows.
There are actually two variants of this code. The first uses global barriers for synchronization, as
follows.

/ / s t o r e d a t a i n i n d e x −( i +1) o f a l l R e s u l t s a r r a y on remote p roc
allResults [targetProc [i ] ] . slice (1 ,− (i+1) ) .copy (myResults .slice ( 1 ,i ) ) ;
/ / w a i t f o r o t h e r p r o c s t o f i n i s h w r i t i n g
Ti .barrier ( ) ;
/ / p r o c e s s new d a t a
. . .

The second variant uses point-to-point write flags with spin locks.

1 / / s t o r e d a t a i n i n d e x −( i +1) o f a l l R e s u l t s a r r a y on remote p roc
2 allResults [targetProc [i ] ] . slice (1 ,− (i+1) ) .copy (myResults .slice ( 1 ,i ) ) ;
3 / / w r i t e f l a g on remote p roc announc ing t h e comm . i s c o m p l e t e
4 allWriteFlags [targetProc [i ] ] [ i ] = 1 ;
5 / / s e e i f o t h e r remote p roc has comple t ed w r i t i n g t o my a r r a y
6 while (myWriteFlags [i ] == 0) {
7 Ti .poll ( ) ;
8 }
9 / / p r o c e s s new d a t a

10 . . .

The latter variant is actually incorrect under Titanium’s relaxed memory-consistency model, as the
writes on lines 2 and 4 may be reordered.

Unfortunately, the incorrect point-to-point synchronization scheme is the default variant used
in the original CG implementation. As a result, all our experiments in the past three sections
use this variant. In race detection, this variant results in two more detected races than the barrier
variant: one race condition between writing data in line 2 and reading it in line 10, and one race
between writing flags in line 4 and reading them in line 6. Unlike most of the other races detected,
these are actually valid races that can result in incorrect execution under a relaxed memory model.
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Figure 8.38: Performance of barrier and point-to-point variants of CG on a Cray XE6.

As part of our experiments in §8.1.2, we compared the two variants and found that 80% of our runs
failed to produce correct results on 64 threads in the point-to-point case, while all runs succeeded
in the barrier case. Figure 8.38 shows that the two variants offer similar performance3. As a result,
we used the barrier variant in §8.1.2 to compare performance to team-based versions of the code
and in §8.4.2.

This illustrates an important lesson: the underlying language, libraries, and runtime system
must provide sufficient tools for the programmer to implement an algorithm without having to
resort to potentially incorrect code. In this case, it was the lack of teams and team collectives that
forced the programmer to implement an incorrect hand-written version.

8.4.2 Sequential Consistency
Sequential consistency is enforced by inserting memory barriers, also called memory fences, into
a program. These memory barriers prevent the compiler from reordering code and the runtime
from reordering memory accesses. As a result, they can negatively affect performance, prevent-
ing optimizations both at compile-time and during execution. The number of memory barriers
inserted by the compiler, which we refer to as static fences, roughly corresponds to the amount
of optimization prevented in the compiler. However, many of these memory barriers may be in
unreachable or non-critical code, so the number of fences actually executed at runtime, or dynamic

3Absolute performance is somewhat slower than reported in §8.1.2, since the experiments here were run on an
older, less optimized version of the code.
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Figure 8.40: Average number of memory barriers executed at runtime. Benchmarks were run on a
Core i7 using a single thread.
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Figure 8.41: Execution time on an IBM iDataPlex using 32 processors on 32 nodes, compared to
a relaxed-consistency version of the code.

fences, provides a better estimate of the performance impact of sequential consistency. Finally, we
measure the actual running time of each benchmark on two platforms, the IBM iDataPlex and the
Cray XE6 described in §8.1.1. We tested distributed performance on the IBM machine, using 32
processors on 32 nodes. On the Cray XE6, we used four processors on a single NUMA node to test
shared-memory performance. We compared execution time of sequentially-consistent versions of
each benchmark to a version compiled using Titanium’s default relaxed memory model.

Figure 8.39 compares the number of memory barriers generated for each program using the
five different levels of analysis in §8.4.1, with an additional base level of analysis:

• naı̈ve: Fences are inserted around all heap accesses.

Figure 8.40 compares the resulting dynamic counts at runtime, and Figure 8.41 shows the execution
time of each sequentially-consistent version, relative to the relaxed version, on the distributed
machine. On the shared-memory machine, we found that the four lower levels of analysis resulted
in code that runs multiple orders of magnitude slower than the relaxed version. As a result, we
were only able to collect data from the two sequentially-consistent versions with pointer analysis,
and Figure 8.42 shows the results.

The results show that our analysis, at its highest precision, is effective in reducing the numbers
of both static and dynamic memory barriers. The execution time, however, is less affected by
the analyses. Running time for Gas and FT nearly match the relaxed versions on the distributed
machine for all levels of analysis. AMR shows a small benefit and CG a larger benefit from
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Figure 8.42: Execution time on a Cray XE6 using four processors on a single NUMA node, com-
pared to a relaxed-consistency version of the code.

pointer analysis. In MG, neither concurrency nor pointer analysis improves execution time over
constraint-based sharing inference. Overall, the benchmarks average 2.3 times the running time of
their respective relaxed versions at the highest level of analysis.

On the shared-memory machine, execution time is somewhat better at the most precise level
of analysis, averaging 1.5 times the relaxed versions. AMR shows a very large benefit from multi-
level pointer analysis over flat pointer analysis, and GAS also shows a small benefit, matching the
performance of the relaxed version. CG does not benefit from the three-level hierarchical pointer
analysis, while FT and MG match relaxed performance in both sequentially-consistent versions.
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Chapter 9

Related Work

Parallel computation has been an active area of research for decades, so there is a wide body of
work related to the concepts in this dissertation. In this chapter, we review some of the work that
has been done in the areas of hierarchical computation, collective alignment, concurrency analysis,
race detection, and sequential consistency. This is not meant to be an exhaustive review of the work
in these areas; rather, we discuss a subset of the related work in order to provide some context to
our own efforts in this thesis.

9.1 Hierarchical Computation
In §2.3, we noted that flat Titanium exposes three levels of machine hierarchy in its memory model
while Unified Parallel C (UPC) exposes two levels. Many other languages also have two-level
memory models, including languages that do not use the single program, multiple data (SPMD)
model of parallelism. In the X10 language [88], the memory and space is composed of places, and
tasks execute at specific places. Remote data can only be accessed by spawning a task at the target
place. Chapel [25] has a similar concept of locales, and it allows data structures to be distributed
across locales. Data-parallel operations over such data structures spawn tasks at each locale to
locally operate on data, and tasks can also be spawned at particular locales.

Only a handful of existing parallel languages incorporate hierarchical programming constructs
beyond two levels of hierarchy.

In the Fortress language [4], memory is divided into an arbitrary hierarchy of regions. Data
structures can be spread across multiple regions, and tasks can be placed in particular regions by
the programmer.

The Sequoia project [36] incorporates machine hierarchy in its language model. A Sequoia
program consists of a hierarchy of tasks that get mapped to the computational units in a hierarchical
machine. Sequoia has two types of tasks: inner tasks that decompose computations into subtasks
and leaf tasks that perform actual computation. Both the height and width of the resulting task
hierarchy can be controlled by the user when starting the program. Communication between tasks
is very limited: only parent and child tasks can communicate, through the use of parameters. This
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restriction on communication as well as the lack of collective operations make the Sequoia model
unsuitable for many applications written in SPMD and PGAS languages.

The hierarchical place trees (HPT) abstraction [106] extends the Sequoia model to allow more
general communication between tasks and incorporates X10’s ability to spawn tasks at specific
locations in a machine. The programming model, however, is still essentially task parallel, with
task queues at each location to run tasks. This model both lacks the simple, analyzable structure
of SPMD parallelism and the latter’s mechanisms for cooperative synchronization and communi-
cation.

Hierarchically tiled arrays (HTAs) [11] allow data structures to be hierarchically decomposed
to match a target machine’s layout. A program can then operate on these data structures in an
essentially data-parallel manner, with the compiler and runtime mapping execution according to
the data layout. Like other data-parallel languages, however, the HTA model is quite restrictive, as
it is difficult to write applications with irregular task or communication structures.

Nested data parallelism allows hierarchical algorithms to be expressed in the context of data
parallelism. The model has been implemented in NESL [41, 15, 13, 14] and in Haskell [22, 21,
46]. However, as mentioned above, irregular algorithms can be difficult to express in the data par-
allel model, and nested data-parallel implementations have focused on vector and shared-memory
machines rather than hierarchical machines. They also require more complicated compilers than
SPMD languages.

Much recent work has been done on hierarchical load balancing for parallel applications.
Zheng et al. demonstrated [113] such an approach in the context of Charm++ [47], a language
with a concurrent object-oriented model. They divide the set of processors into independent groups
arranged in a hierarchy. Runtime measurements are then used to balance load across each subtree
in the hierarchy. The HotSLAW library for UPC [74] extends the SPMD model of UPC with dy-
namic task parallelism. Dynamically created tasks are executed using task queues on a subset of the
UPC threads, and a hierarchical work-stealing algorithm balances load according to user-defined,
hierarchical locality domains.

The hierarchical single program, multiple data (HSPMD) model is in some sense the inverse of
the RSPMD model. In RSPMD, an initial, fixed set of threads is recursively subdivided into smaller
teams of cooperating threads. In HSPMD, on the other hand, there is only a single thread initially,
and each thread can spawn a new set of cooperating threads. The Phalanx programming model
uses a version of HSPMD [38]. We considered the HSPMD model as well [50], but concluded that
it requires a more complicated compiler and runtime implementation than RSPMD.

Various analytical models for computation on hierarchical machines have been studied. The
Multi-BSP model [101] consists of a hierarchical set of memory spaces, with processors at the low-
est level. Each level has parameters for memory size, communication cost, and synchronization
cost. Using this model, optimal algorithms can be defined for problems such as matrix multi-
plication and fast Fourier transform. The D-BSP [98, 12] model also incorporates hierarchical
communication costs, but unlike Multi-BSP, it does not model memory and cache hierarchies.
Other models encompass multiprocessor memory hierarchies but not hierarchical communication
costs [102, 89].

The concept of thread teams has been gaining popularity in the SPMD community. MPI has
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communicators that allow a subset of threads to perform collective operations, and other com-
munication layers and programming languages have recently introduced or are in the process of
introducing similar team constructs. However, MPI communicators place no restriction on the
underlying thread structure of a team, and a thread can be a part of multiple communicators con-
currently, making it easy to deadlock a program through improper use of communicators. Even
correct use of multiple communicators can be difficult for programmers to understand and compil-
ers to analyze, as they must reason about the order of communicator calls on each thread. Finally,
communicators do not have a hierarchical structure, so they cannot easily reflect the layout of the
underlying machine.

9.2 Collective Alignment
In addition to Aiken and Gay’s work on structural correctness, many others have addressed the
problem of collective alignment.

Zhang and Duesterwald developed a static analysis for matching textually-unaligned barriers
in MPI [111]. The analysis is available as part of the Eclipse Parallel Tools Platform [33]. They
later extended their analysis in collaboration with Gao to shared-memory OpenMP programs and
built a concurrency analysis on top of it [112]. Siegel and Avrunin applied model checking to MPI
programs [92]. Their system detects deadlock in the presence of MPI barriers.

Jeremiassen and Eggers developed a static analysis for barrier synchronization for SPMD pro-
grams with non-textual barriers that divides a program into non-concurrent phases [45]. This anal-
ysis provides a conservative estimate of which barriers can be erroneously aligned: a barrier can
only be misaligned if it and another barrier may both be executed at the boundary of the same
phase. Other work has also been done in the area of concurrency analysis [60, 67], though like
Jeremiassen and Eggers, the authors don’t directly apply it to detecting alignment errors.

A lot of work has also been done in the area of barrier optimization [26, 78, 99], which re-
quires reasoning about the execution of barriers. However, work in this area generally either as-
sumes aligned barriers or is not concerned with detecting synchronization errors arising from the
misaligned barriers.

The main drawback to static analysis is imprecision: it may be unable to conclude that a col-
lective is properly aligned even if it is. While in practice, results from static analysis appear to be
precise enough to be useful for other analyses and optimizations, the existence of false positives
makes it less than ideal for enforcing semantic restrictions, as it would report nonexistent errors to
the programmer.

9.3 Pointer Analysis
The language and type system we presented here are generalizations of those described by Liblit
and Aiken [65]. They defined a two-level hierarchy and used it to produce a constraint-based anal-
ysis that infers locality information about pointers. Later with Yelick, they extended the language
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and type system to consider sharing of data, and they defined another constraint-based analysis to
infer sharing properties of pointers [66].

Pointer analysis was first described by Emami [34] and Andersen [6], and later extended by
others to parallel programs. Rugina and Rinard developed a thread-aware pointer analysis for the
Cilk multithreaded programming language [87] that is both flow-sensitive and context-sensitive.
Others such as Zhu and Hendren [114] and Hicks [42] have developed flow-insensitive versions
for multithreaded languages. However, none of these analyses consider hierarchical, distributed
machines.

The pointer analysis we presented here is a generalization and formalization of the analysis
sketched in a previous paper [51]. That analysis is similar to a two-level version of our hierarchical
analysis, but the abstraction is quite different. Only the abstraction of the transmit operation
was described in that paper, though an almost complete implementation was done.

9.4 Concurrency Analysis
An extensive amount of work on concurrency analysis has been done for both languages with
dynamic parallelism and SPMD programs. Duesterwald and Soffa presented a data-flow analysis
to compute the happened-before and happened-after relation for program statements [32]. Their
analysis is for detecting races in programs based on the Ada rendezvous model [100]. Masticola
and Ryder developed a more precise non-concurrency analysis for the same set of programs [68].
The results are used for debugging and optimization. Jeremiassen and Eggers developed a static
analysis for barrier synchronization for SPMD programs with non-textual barriers [45]. They used
the information to reduce false sharing on cache-coherent machines.

9.5 Race Detection
Others besides Duesterwald and Soffa and Masticola and Ryder have developed tools for race de-
tection. Flanagan and Freund presented a static race-detection tool for Java based on type inference
and checking [37]. Boyapati and Rinard developed a type system for Java that guarantees that a
program is race-free [18]. Tools such as Eraser [90] and TRaDe [24] detect races at runtime in-
stead of statically. Our prior work presented a concurrency-analysis algorithm and race detection
for Titanium [52]. Other static and dynamic race-detection schemes have also been developed [85,
8, 31, 23, 79].

9.6 Sequential Consistency
The memory consistency issue arises in a language with an explicitly parallel semantics and some
type of shared address space. The class of such languages includes Java, UPC, Titanium, and
Co-Array Fortran, some of the languages proposed in the recent HPCS effort, as well as shared-
memory language extensions such as POSIX Threads and OpenMP [19, 77, 80, 110].
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Shasha and Snir provided some of the foundational work in enforcing sequential consistency
from a compiler level when they introduced the idea of cycle detection [91]. However, that work
was designed for general MIMD parallelism, limited to straight-line code, and was not designed
as a practical static analysis. Midkiff and Padua outlined some of the implementation techniques
that could violate sequential consistency and developed some static analysis ideas, including a
concurrent static single assignment form in a paper by Lee et al. [63]. As part of the Pensieve
project, Lee and Padua exploited properties of fences and synchronization to reduce the number of
delays in cycle detection [64]. The project also includes a Java compiler that takes a memory model
as input [95]. More recently, Sura et al. have shown that cooperating escape, thread structure, and
delay set analyses can be used to provide sequential consistency cheaply in Java [96]. Our work
differs from theirs in two primary ways: 1) we take advantage of some of the synchronization
paradigms, such as barriers, that exist in SPMD programs, and 2) our machine targets include
distributed-memory architectures where the cost of a memory fence is essentially that of a round-
trip communication across the network.

The earliest implementation work on cycle detection was by Krishnamurthy and Yelick for
the restricted case of SPMD programs [60]. That was done in a simplified subset of the Split-
C language and introduced a polynomial-time algorithm for cycle detection in SPMD programs.
They also used synchronization analysis to reduce the number of fences, but their source language
did not have the restriction that barriers must match textually and they did not take advantage
of single conditionals. At compile time, they generated two versions of the code, one assuming
the barriers line up and the other one not. At runtime, they switched between the two versions
depending on how the barriers were executed. Our approach does not suffer the same runtime
overhead and code bloat that exists in theirs. In addition, their compiler used only a simple type-
based alias analysis.

There has also been work done in the area of reducing the number of fences required to enforce
sequential consistency. Liblit, Aiken, and Yelick developed a type system to identify shared data
accesses in Titanium programs [66], and for sequential consistency, they only insert a fence at each
shared data access identified. Based on our experimental results in §8, our technique is a significant
improvement over theirs in terms of static fence count, dynamic fence count, and running time of
the generated programs.
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Chapter 10

Conclusion

Achieving good performance on modern machines has become much harder since the advent of
multicore processors. It will only become more difficult as machines become more hierarchical,
resulting in a wide array of communication costs between processing cores. In order to make
the task tractable, new programming models, libraries, and runtime systems are needed to allow
programmers to express hierarchical computation with minimal effort.

While many approaches to the hierarchy problem are possible, including various degrees of
mixing data and task parallelism, we chose to base ours on the model of single program, multiple
data (SPMD). In this model, all threads execute the same code, and powerful collective opera-
tions can be used for synchronizing and communicating among threads. As a result of its simple
structure, SPMD has proven to provide good performance, productivity, safety, and analyzability.

We defined the recursive single program, multiple data (RSPMD) model that extends SPMD
with hierarchical, structured teams. We designed RSPMD extensions to the Titanium language,
showing that the combination of a team data structure and lexical usage constructs prevents er-
roneous usage of teams. Team collectives bring the performance and productivity of collective
operations to subsets of threads in a program.

A common problem in the SPMD model is ensuring that collective operations are aligned so
that all threads execute the same sequence of collectives, avoiding deadlock. We demonstrated
how to ensure alignment of global collectives through dynamic checking, reducing programmer
burden over static schemes. We extended this system to team collectives, providing important
safety guarantees in RSPMD programs.

The simple structure of SPMD programs and collective operations enable precise but efficient
analyses. We presented a hierarchical pointer analysis for RSPMD programs that infers where
each pointer’s data is allocated and on which threads it is located. We showed that this analysis
improves precision of locality and sharing inference, which allow many program optimizations to
be performed.

We also defined a global concurrency analysis for SPMD programs, taking advantage of aligned
collectives. Such an analysis determines the set of concurrent statements in a program, information
important to many other optimizations and analyses such as race detection. We showed how to
improve precision of the analysis by eliminating impossible program paths, without degrading the
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theoretical efficiency of the analysis. We proceeded to demonstrate how to extend this analysis to
compute concurrency information at the granularity of individual teams.

We combined our pointer and concurrency analyses to detect race conditions, a common type
of parallel bug, and to enforce a sequentially-consistent memory model that is easier for users to
understand than alternative models. In race detection, our analyses reduced the number of false
positives by three orders of magnitude, enabling us to find an actual bug in a conjugate gradient
application. The analyses also lowered the performance cost of providing sequential consistency
to within a factor of four on a distributed machine and three on a shared-memory platform.

We implemented multiple benchmarks using the RSPMD model, including sorting, conjugate
gradient, particle in cell, and stencil. We demonstrated that hierarchical teams enable divide-and-
conquer algorithms such as sorting to be implemented elegantly. We showed that team collectives
provide better performance than hand-written alternatives in conjugate gradient, resulting in code
that runs nearly twice as fast at high thread counts. We also demonstrated that hierarchical teams
enable optimizations for hierarchical machines to be written in the context of a single program-
ming model. These optimizations enabled the particle in cell benchmark to scale to eight times as
many threads as the non-hierarchical version and increased performance of sorting by up to 1.4x.
We showed that our hierarchical model beats the standard mechanism of combining a distributed
library with a shared-memory one by as much as 14% in stencil.

While we demonstrated the benefits of RSPMD for various benchmarks, challenges do remain
in the area of hierarchical computation. Our experiments with conjugate gradient and particle in
cell showed that shared memory cannot always be exploited for performance gains. The latter
benchmark also illustrated the increased tuning space of hierarchical codes; while this introduces
new opportunities for optimization, it can also require more programmer effort to achieve maximal
performance. In addition, the stencil code proved the difficulty of composing different parallel
libraries. Finally, we did not address other important problems in large-scale parallel computing,
such as heterogeneity and fault tolerance.

However, we did show that RSPMD provides safety, analyzability, expressiveness, and perfor-
mance on hierarchical machines. We believe that the model is a significant step towards making
parallel programming easier for users. We also believe that it provides a useful building block for
further simplifying parallel programming, as it can be applied in libraries and specializers to hide
most of the difficult details of parallelism from end users.
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