
DISTRIBUTED IMMERSED BOUNDARY SIMULATION IN TITANIUM

E. GIVELBERG AND K. YELICK

Abstract. The immersed boundary method is a general technique for modeling elastic
boundaries immersed within a viscous, incompressible fluid. The method has been applied
to several biological and engineering systems, including large scale models of the heart and
cochlea. These simulations have the potential to improve our basic understanding of the
biological systems they model and aid in the development of surgical treatments and pros-
thetic devices. Despite the popularity of the immersed boundary method and the desire to
scale the problems to accurately capture the details of the physical systems, parallelization
for large scale distributed memory machine has proven challenging. The primary reason is
a classic locality and load balance tradeoff that arises in distributing the immersed bound-
ary data structure across processors. In this paper we describe a parallelized algorithm
for the immersed boundary method that is designed for scalability on distributed memory
multiprocessors and clusters of SMPs. It is implemented using the Titanium language, a
Java-based high performance scientific computing. Our software package, called IB, takes
advantage of the object-oriented features of Titanium to provide a framework for simulating
immersed boundaries that separates the generic immersed boundary method code from the
specific application features that define the immersed boundary structure and the forces
that arise from those structures. Our results demonstrate the scalability of our design and
the feasibility of large scale immersed boundary computations with the IB package.

1. Introduction

The immersed boundary method is a general numerical method for computational mod-
eling of systems involving fluid-structure interactions. Complex systems where elastic (and
possibly active) tissue is immersed in a viscous, incompressible fluid, arise naturally in biology
and engineering. The immersed boundary method was developed by Peskin and McQueen
to study the patterns of the blood flow in the heart [15, 13]. It has subsequently been applied
to a variety of problems, such as platelet aggregation during blood clotting [5], the deforma-
tion of red blood cells in a shear flow [4], the flow in collapsible thin walled vessels [3], the
swimming of eels, sperm and bacteria [6, 2], the flow past a cylinder [12], two-dimensional [1]
and three-dimensional models of the cochlea [8], valveless pumping [11] and flexible filament
flapping in a flowing soap film [21]. For a recent review of the research in immersed boundary
computations and further applications see [16].

Immersed boundary simulation of complex system such as the heart and the cochlea
requires very large computing resources: the heart model experiments were carried out on
the Cray T90 [14] and the cochlea was constructed on the HP Superdome at Caltech [9].
Numerical experiments with both systems often required days of dedicated computing. Both
the Superdome and the Cray T90 are shared memory machines, so the parallelization of the
serial immersed boundary code was achieved mainly (but not exclusively) with the help of
compiler directives. The great complexity of the simulated systems typically necessitates the
use of finer grids leading to larger computations that exceed the capabilities of shared memory
systems available. Such finer computational grids are necessary to reduce the numerical error

1

2 E. GIVELBERG AND K. YELICK

and to incorporate finer details of the system into the model. For example, higher resolution
in the heart model can help us understand the turbulent flow around the valves. Similarly,
in the cochlea, the micro-structure of the organ of Corti is of crucial importance to the
dynamics of the system.

The heart and the cochlea are the two examples motivating our present work developing
the algorithm and the software package IB for immersed boundary computations in Titanium.
Titanium is an explicitly parallel dialect of Java developed at UC Berkeley to support high-
performance scientific computing on large-scale multiprocessors, including massively parallel
supercomputers and distributed-memory clusters with one or more processors per node.
Other language goals include safety, portability, and support for building complex data
structures.

Distributed memory implementations of the immersed boundary method have proved quite
challenging. Previous attempts included a Split-C version that scales well on the Thinking
Machine CM5, and an earlier Titanium version [19] that scales on the Cray T3E, both
machines with support for lightweight communication. Despite the great need, so far no
distributed memory implementation has been used in any immersed boundary model. The
interaction between the fluid and immersed boundaries are the primary source of both pro-
gramming and performance problems. While the structure of the immersed boundaries
depend on the application domain, it is generally not distributed evenly throughout the
fluid domain. If the boundary data is distributed uniformly across processors, the resulting
system has a significant amount of irregular communication that arises as the forces between
the boundaries and fluid interact. The global address space Titanium aid in programming,
but performance can still be problematic if the hardware does not perform fine-grained com-
munication efficiently.

Immersed boundary computations are based on a Lagrangean formulation, where separate
computational grids are maintained for the fluid and for the material immersed in it. The
fluid is modeled by a three-dimensional rectangular grid, while the immersed material is
typically modeled as a collection of elastic fibers (one-dimensional grids) or as an elastic
shell (a two-dimensional grid). This framework provides for a straightforward incorporation
of complex models of the immersed boundary. Simulation proceeds in a series of time steps,
where during each time step the elastic forces are computed on the material grids, then
spread to the fluid grid, the fluid equations are solved yielding a new fluid velocity, which is
then interpolated to the material grids and is finally used to update their position relative
to the fluid.

The complexity of an immersed boundary computation is determined by the sizes of the
fluid and the immersed boundary grids, and by the size of the time step. The heart model
uses a 1283-point fluid grid with the heart muscle and the valves modeled by a collection of
elastic fibers totaling approximately 600,000 points. The cochlea model, on the other hand,
uses a 2563-point fluid grid, with the immersed material modeled as a set of elastic shells and
bony walls, totaling approximately 750,000 points. Extensive numerical experiments with
the cochlea have shown that the 2563-point fluid grid is not sufficient for many numerical
experiments (see [8]). Our goal in developing the Titanium immersed boundary software is
to construct a heart model and a cochlea model based on 5123-point fluid grids.

The rest of the paper is organized as follows. In the next section we introduce the immersed
boundary equations. These equations form the basis of the numerical method, which is
described in section 3. Section 4 surveys the main features of the Titanium programming

DISTRIBUTED IMMERSED BOUNDARY SIMULATION IN TITANIUM 3

language, which we use to implement the numerical method. The algorithm and the data
structures utilized in our implementation are outlined in section 5. In the following section
we demonstrate the feasibility of large scale immersed boundary computations using our
software. We conclude with a discussion of our plans for further performance improvements
in the Titanium immersed boundary software.

2. The Immersed Boundary Equations

The immersed boundary method is based on a Lagrangean formulation of the fluid-
immersed material system. The fluid is described in the standard cartesian coordinates
on R3, while the immersed material is described in a different curvilinear coordinate system.
Let ρ and µ denote the density and the viscosity of the fluid, and let u(x, t) and p(x, t)
denote its velocity and pressure, respectively. The Navier-Stokes equations of a viscous
incompressible fluid are:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + µ∇2u + F(1)

∇ · u = 0,(2)

where F denotes the density of the body force acting on the fluid. For example, if the
immersed material is modeled as a thin shell, then F is a singular vector field, which is zero
everywhere, except possibly on the surface representing the shell. The numerical method
uses a discretization of the Navier-Stokes equations (1) and (2) on a periodic rectangular
grid.

Let X(q, t) denote the position of the immersed material in R3. For a shell, q takes values
in a domain Ω ⊂ R2, and X(q, t) is a 1-parameter family of surfaces indexed by t, i.e.,
X(q, t) is the middle surface of the shell at time t. Let f(q, t) denote the force density that
the immersed material applies on the fluid. Then

F(x, t) =

∫
f(q, t)δ(x−X(q, t)) dq,(3)

where δ is the Dirac delta function on R3. This equation merely says that the fluid feels the
force that the immersed material exerts on it, but it is important in the numerical method,
where it is one of the equations determining fluid-material interaction. The other interaction
equation is the no-slip condition for a viscous fluid:

∂X

∂t
= u(X(q, t), t)

=

∫
u(x, t)δ(x−X(q, t)) dx.(4)

The system has to be completed by specifying the force f(q, t) of the immersed material. In
a complicated system such as the cochlea the immersed material consists of many different
components: membranes, bony walls, an elastic shell representing the basilar membrane, and
various cells of the organ of Corti, including outer hair cells, which may actively generate
forces. For each such component it is necessary to specify its own computation grid and an
algorithm to compute its force f . It is in the specification of these forces that models for
various system components integrate into the macro-mechanical model.

4 E. GIVELBERG AND K. YELICK

3. The First Order Immersed Boundary Numerical Method

We describe here a first-order immersed boundary numerical scheme, which is the easiest
to implement and has the important advantage of modularity: incorporating various models
of immersed elastic material is straightforward.

Let ∆t denote the duration of a time step. It will be convenient to denote the time step
by the superscript. For example un(x) = u(x, n∆t). At the beginning of the n-th time step
Xn and un are known. Each time step proceeds as follows.

(1) Compute the force fn that the immersed boundary applies to the fluid. For simple
materials, such as fibers, this is a straightforward computation (see [17]). For a
detailed description of a shell immersed boundary force computation see [7].

(2) Use (3) to compute the external force on the fluid Fn.
(3) Compute the new fluid velocity un+1 from the Navier Stokes equations.
(4) Use (4) to compute the new position Xn+1 of the immersed material.

We shall now describe in detail the computations in steps 2 — 4, beginning with the Navier-
Stokes equations.

The fluid equations are discretized on a rectangular lattice of mesh width h. We will make
use of the following difference operators which act on functions defined on this lattice:

D+
i φ(x) =

φ(x + hei)− φ(x)

h
(5)

D−
i φ(x) =

φ(x)− φ(x− hei)

h
(6)

D0
i φ(x) =

φ(x + hei)− φ(x− hei)

2h
(7)

D0 = (D0
1, D

0
2, D

0
3)(8)

where i = 1, 2, 3, and e1, e2, e3 form an orthonormal basis of R3.
In step 3 we use the already known un and Fn to compute un+1 and pn+1 by solving the

following linear system of equations:

ρ

(
un+1 − un

∆t
+

3∑
k=1

un
kD

±
k un

)
= −D0pn+1 + µ

3∑
k=1

D+
k D−

k un+1 + Fn(9)

D0 · un+1 = 0(10)

Here un
kD

±
k stands for upwind differencing:

un
kD

±
k =

{
un

kD
−
k , un

k > 0
un

kD
+
k , un

k < 0

Equations (9) and (10) are linear constant coefficient difference equations and, therefore, can
be solved efficiently with the use of the Fast Fourier Transform algorithm.

We now turn to the discretization of equations (3), (4). Let us assume, for simplicity,
that Ω ⊂ R2 is a rectangular domain over which all of the quantities related to the shell are
defined. We will assume that this domain is discretized with mesh widths ∆q1, ∆q2 and the
computational lattice for Ω is the set

Q = {(i1∆q1, i2∆q2) | i1 = 1 . . . n1, i2 = 1 . . . n2} .

DISTRIBUTED IMMERSED BOUNDARY SIMULATION IN TITANIUM 5

In step 2 the force Fn is computed using the following equation.

Fn(x) =
∑
q∈Q

fn(q)δh(x−Xn(q))∆q(11)

where ∆q = ∆q1∆q2 and δh is a smoothed approximation to the Dirac delta function on R3

described below.
Similarly, in step 4 updating the position of the immersed material Xn+1 is done using the

equation

Xn+1(q) = Xn(q) + ∆t
∑
x

un+1(x)δh(x−Xn(q))h3 ,(12)

where the summation is over the lattice x = (hi, hj, hk), where i, j and k are integers.
The function δh which is used in (11) and (12), is defined as follows:

δh(x) = h−3φ(
x1

h
)φ(

x2

h
)φ(

x3

h
) ,

where

φ(r) =

1
8
(3− 2|r|+

√
1 + 4|r| − 4r2) |r| ≤ 1

1
2
− φ(2− |r|) 1 ≤ |r| ≤ 2

0 2 ≤ |r|
For an explanation of the construction of δh see [17].

4. The Titanium Programming Language

Titanium is an explicitly parallel Java-based language designed to support high-performance
scientific computing on large-scale multiprocessors, including massively parallel supercom-
puters and distributed-memory clusters with one or more processors per node [10, 20].

Titanium is a global address space language, closely related to UPC, Co-Array Fortran,
and several older research languages based on C and C++. It combines the parallelism
model commonly found in message passing modes with the shared address space found in
shared memory models. In particular, Titanium uses a static parallelism (SPMD) model in
which the number of parallel threads is determined at program startup time. It provides
a global addresss space abstraction through which one thread may directly read or write
the memory of another thread, although the address space is logically partitioned so that
each thread has a portion of the address space that is nearby. Programmers have control
over data layout, synchronization, and load balancing for high performance, while the global
address space simplifies programming but allowing for the direct expression of distributed
data structures.

In spite of the global address space, the Titanium implementation runs on essentially any
parallel machine, including shared memory multiprocessors, clusters of uniprocessors, and
clusters of SMPs. On machines with hardware support for shared memory the compiler
generates conventional load and store instructures to access memory that is associated with
another thread. On a distributed memory platform, lightweight communication calls are
inserted automatically for pointer dereferences. Titanium programs can run unmodified on
uniprocessors, shared memory machines and distributed memory machines - performance
tuning may be necessary to arrange an application’s data structures for distributed mem-
ory, but the functional portability allows for development on shared memory machines and
uniprocessors.

6 E. GIVELBERG AND K. YELICK

Titanium preserves the safety properties of Java, which prevent accessing data that is
unallocated through array bounds checking, strong typing, and automatic memory man-
agement. In addition to the parallelism model, which replaces conventional Java threads,
Titanium adds support to improve programming for scientific applications. These include:

• User-defined immutable classes (often called “lightweight” or “value” classes)
• Flexible and efficient multi-dimensional arrays with a rich set of operations for defin-

ing and manipulating the index set of an array.
• Zone-based memory management, in addition to standard garbage collection
• A type system for expressing and inferring locality and sharing properties of dis-

tributed data structures
• Compile-time prevention of deadlocks on barrier synchronization
• A library of useful parallel collective operations such as barriers, broadcasts, and

reductions.
• Operator-overloading
• Parameterized classes similar to C++ style template.

5. The Data Structures and the Algorithm

Throughout the rest of this paper we assume that we have p = 2k processors available
for our computation. Though our algorithm may be suitable for a more general number
of processors, this assumption will simplify our discussion. The solution of the discretized
Navier-Stokes equations (9) – (10) is the central and most costly part of the numerical
method. In this part we are using the FFTW software, that provides efficient and portable
Fast Fourier Transform functions []. The decision to use FFTW influenced the design of our
main data structures. Parallel execution of FFTW routines requires that the transform data
be partitioned into slabs. When a transform of an N1 × N2 × N3-point array A[i1, i2, i3] is
computed using p processors (where p|N1), processor q stores the data slab

A[i1, i2, i3] : i1 =
N1

p
q, . . . ,

N1

p
(q + 1)− 1, i2 = 0, . . . , N2 − 1, i3 = 0, . . . , N3 − 1

Accordingly, fluid velocity, pressure and body force are stored in such slabs: U1, U2, U3, P
and F1, F2, F3. The application of the upwind differencing operator in (9) makes it necessary
however to pad each such slab with two ghost planes corresponding to i1 = N1

p
q − 1 and

i1 = N1

p
(q + 1). (Notice that because of the periodicity of the domain the calculation of the

index i1 is carried out modulo N1.) This data structure is called FluidSlab.
Immersed material grids can be one, two or three-dimensional rectangular arrays of grid

points. The complete specification of the material grid and its type depends on the particular
application. The IB package provides two abstract classes for this purpose. Local properties
of the material must be specified in a class derived from IB.GridPoint, its global properties
– in a class derived from IB.Grid. For example an elastic shell material type can be defined
by deriving a class Shell and a class ShellPoint. The class ShellPoint naturally contains
local elastic parameters of the material. On the other hand, the elastic force of the material
must be specified by defining an appropriate method within the Shell class. The IB package
provides a utility for registering material types and facilities for generation and manipulation
of such collections of objects. The shell material type may be created, for example, as follows:

Shell shell = new Shell();

ShellPoint shellpoint = new ShellPoint();

DISTRIBUTED IMMERSED BOUNDARY SIMULATION IN TITANIUM 7

IB.MaterialType.register("shell", shell, shellpoint);

Having defined the required types of immersed material, the IB package user can proceed
to generate the material grids. Each immersed boundary grid must be local to a domain of
some processor and it is the responsibility of the user to ensure proper load balancing by
distributing the grids in a uniform way among processors. The computation of the elastic
forces in the first phase of each immersed boundary time step is therefore completely local
to each processor. Upon the completion of this step it is necessary to spread these forces to
the fluid grid, whose data structures are shared among all processors. To accomplish this
efficiently it is necessary to achieve both good processor load balancing and to communicate
the data among the processors in bulk. On most available systems sending a large number of
small messages is very expensive, and it is preferable to send a single large message instead.
We therefore introduce an auxiliary data structure, called CubeList, which each processor
maintains locally.

We imagine the fluid grid being partitioned into a disjoint set of 4 × 4 × 4 cubes, with
cube (j1, j2, j3) having its corner at the point (4j1, 4j2, 4j3). When the force of an immersed
material point is spread to the fluid, it can affect at most 8 such cubes. First, each processor
spreads the immersed boundary forces to the fluid locally, creating a list of such cubes
storing the force contribution to the fluid grid from all immersed boundary grids owned by
this processor. Once such list has been created, its contents is sent to other processors,
which use it to update their local FluidSlab structures F1, F2 and F3. At the beginning of
the force spreading phase of the time step each processor has an empty list of cubes. For
each immersed boundary point the processor determines the corresponding fluid cubes that
need to be updated. If such cubes have not been allocated yet by this processor, they are
allocated before the update is performed. When the width of the fluid slab is a multiple of
4 (not counting the ghost planes), each fluid cube is contained in only one fluid slab. Each
processor now packs its cubes into p disjoint messages to be sent to all processors (including
itself). At the end of this communication phase each processor works through all of the
messages it has received, unpacking the cubes and accumulating the cube data into F1, F2

and F3.
The final phase of the time step involves computing the new position of the immersed

boundary by interpolating the new fluid velocity, obtained by solving the Navier-Stokes
equations, from the fluid grid to the immersed boundary grids. This phase is completely
analogous to the force spreading phase, except that the cube lists now contain fluid velocity
data, and the information is propagating in the opposite direction: from the fluid grid to the
immersed material grids. It is interesting to notice that the cubes received during the force
spreading phase are exactly the cubes that are sent during the velocity interpolation phase.
Therefore, when processor p1 received a list of cubes containing force data from processor p2,
it recorded the ids of the received cubes. It now carves these cubes out of the slabs U1, U2

and U3, packs them in a message and sends it to p2. As before, upon the completion of
the communications phase, each processor scans all the immersed boundary points it owns,
using the fluid velocity data stored in the CubeList it received to update the position of
each point.

6. Software Performance

Since the construction of a heart model, or a cochlea model, is a complicated undertaking
requiring a significant amount of work, we have constructed a number of simple test models

8 E. GIVELBERG AND K. YELICK

for the purpose of tuning the performance of the IB software. Each such test model consisted
of a number of rectangular plates immersed in fluid. The precise nature of the elastic material
is not important for the complexity of the immersed boundary computations because the
elastic force calculation phase is negligible in time with respect to the other phases of the
algorithm. The complexity of the computation is affected only by the total number of
immersed boundary points and by their motion relative to the fluid. We have partitioned
the immersed material into a number of grids, distributing an equal number of grids and
equal number of points among the processors. We expect to be able to achieve such a
distribution in a realistic simulation. The heart, for example, is modeled by thousands of
distinct fibers, which can be easily assigned to processors to achieve an even balancing of
the load.

In immersed boundary computations refining the fluid grid necessitates refining the im-
mersed material grids accordingly. This is required to prevent the fluid leaking through the
immersed boundary (for volume conservation in immersed boundary computations see [18]).
The cochlea model consists of a number of surfaces and, assuming the fluid grid of size N3,
its total number of immersed boundary points is proportional to N2. The heart muscle, on
the other hand, though being modeled by a collection of one-dimensional fibers, occupies a
three-dimensional volume, and therefore the total number of immersed boundary points in
the heart model is proportional to N3. Accordingly, we have tested the performance of the
software on several models with varying number of immersed boundary points. Each of our
test models contained a number of identical N×N -point plates. We considered models with
the number of plates n = 1, 16 and N/8, and N = 256 and N = 512. Accordingly, in the
discussion below we refer to a model with n plates of size N × N as a (N, n)-model. The
models with n = 1 possess very little immersed material and therefore provide an insight
into the performance of the fluid solver part of the algorithm. The n = 16 models resemble
the cochlea in the size of their immersed material, while the n = N/8 models resemble the
heart.

Our experiments were carried out on the IBM SP RS/6000 at the National Energy Re-
search Scientific Computing Center (NERSC). This is a distributed memory computer pos-
sessing a large number of 16-processor nodes. Currently there are 380 nodes on this computer
and each node has between 16 and 64 GBytes of memory. All of our tests were carried out
on either 1, 2, 4 or 8 nodes, with the total number of processors used being 16, 32, 64 or
128. Figure 1 also contains data from experiments with 1, 2, 4 and 8 processors, all within a
single node. Figures 1 and 2 demonstrate the scaling of our software when a varying number
of processors is used to compute the same problem. Because our present algorithm requires
the width of the fluid slabs (without the ghost planes) to be divisible by 4, we can utilize at
most 64 processors on 2563-fluid problems, and at most 128 processors on 5123-fluid prob-
lems. Table 1 summarizes the wall clock per time step results for a number of test models,
as well as the total number of floating point operations computed (in billions) when the
maximal number of processors is employed.

Finally, Table 2 shows the timings of the main phases of each time step. The second row
refers to the spreading of the forces from the immersed boundary into the local CubeList
structure. Rows 6 – 10 detail the performance of the fluid solver: “upwind” refers to the
initial step of the fluid solver which uses the slabs F1, F2, F3 and applies the upwind differ-
encing operator to U1, U2, U3. Three Fourier transforms are applied to the components of the
result of this computation. The fluid equations are then solved in the Fourier space, and the

DISTRIBUTED IMMERSED BOUNDARY SIMULATION IN TITANIUM 9

49

25.5

13

7.1

4.1
2.9

1.7

0

10

20

30

40

50

60

1 2 4 8 16 32 64

Figure 1. Execution wall-clock time (in seconds) per time step for the
(256, 1)-model as a function of the number of processors.

Table 1. Wall clock time per time step for various test models.

model fluid grid total immersed boundary number of total wall clock
name size size processors GFLOPs time

(256, 1) 2563 2562 = 64K points 64 4.34 1.7 sec
(256, 16) 2563 16× 2562 = 1M points 64 5.5 2.4 sec
(256, 32) 2563 32× 2562 = 2M points 64 6.78 3.1 sec
(512, 1) 5123 5122 = 256K points 128 38.4 7.9 sec
(512, 16) 5123 16× 5122 = 4M points 128 43.2 9.6 sec
(512, 64) 5123 64× 5122 = 16M points 128 58.1 15.2 sec

solution is obtained by means of inverse Fourier transforms. The total time devoted to the
fluid solver is recorded in row 11. The last phase of the time step, named “move material”,
involves both the interpolation of the fluid velocity from cubes to immersed boundary grids
and the updating of the immersed boundary position.

7. Summary and Conclusions

We have developed an efficient algorithm for immersed boundary simulations on dis-
tributed systems. Using the Titanium programming language we have implemented a soft-
ware package IB based on this algorithm, which provides the package user with a set of
versatile classes and utilities to build immersed boundary applications. Our main specific
goals are to construct large scale immersed boundary models of the heart and of the cochlea.
In this paper we have demonstrated the feasibility of such constructions. Nevertheless, the

10 E. GIVELBERG AND K. YELICK

42

23

13

7.9

0

5

10

15

20

25

30

35

40

45

16 32 64 128

Figure 2. Execution wall-clock time (in seconds) per time step for the
(512, 1)-model as a function of the number of processors.

Table 2. Breakdown of the wall clock time per time step for various test
models. (See explanation in the body of the article.)

(256, 16) (256, 32) (512, 16) (512, 64)

compute material force 0.015 0.027 0.028 0.08
spread force 0.25 0.49 0.52 1.97
pack force cubes 0.012 0.021 0.023 0.08
send force cubes 0.22 0.28 0.52 1.4
update force slabs 0.08 0.1 0.43 0.84
upwind 0.29 0.29 1.49 1.46
3× FFT 0.39 0.38 2.12 2.1
solve 0.06 0.06 0.25 0.25
3× FFT−1 0.39 0.41 2.21 2.29
copy fluid velocity 0.06 0.06 0.24 0.25
Total (fluid solver) 1.3 1.31 6.63 6.78
pack velocity cubes 0.04 0.07 0.14 0.47
send velocity cubes 0.23 0.28 0.58 1.57
unpack velocity cubes 0.01 0.02 0.034 0.078
move material 0.22 0.47 0.47 1.86

Total (time step) 2.4 3.09 9.39 15.16

performance measurements we report here indicate that numerical experiments with these
models will require considerable time. Indeed, a single typical experiment with the cochlea

DISTRIBUTED IMMERSED BOUNDARY SIMULATION IN TITANIUM 11

model may require over 10,000 time steps, which in the case of a 5123-point fluid grid we
estimate will take more than 3 days to complete. Simulating a single beat of the heart, on
the other hand, requires over 50,000 time steps. Such an experiment can now be completed
in less than 3 days in the case of a model based on a 2563-point fluid grid. A heart model
based on a 5123-point fluid grid is presently too large to be run using the current version of
the IB package.

We have demonstrated good scaling of our algorithm and currently the main limitation of
our software lies in the fact that the number of processors we can employ on N1 ×N2 ×N3-
fluid based models is at most N1/4. However, it is clear from the description of our algorithm
that this limitation can be removed. We are planning to introduce this improvement in the
next version of the IB package. We are confident this will substantially reduce the total wall
clock time of large immersed boundary computations and will make the construction of a
5123-based heart model feasible. Finally, we are investigating the use of a multigrid-based
Navier-Stokes solvers, which would allow for a blocked decomposition of the fluid mesh to
provide further flexibility in the processor configuration and possibly further scalability.

References

[1] R. P. Beyer. A computational model of the cochlea using the immersed boundary method. J. Comp.
Phys., 98:145–162, 1992.

[2] R. Dillon, L. J. Fauci, and D. Gaver. A microscale model of bacterial swimming, chemotaxis and
substrate support. J. Theor. Biol., 177:325–340, 1995.

[3] Rosar M. E. and Peskin C. S. Fluid flow in collapsible elastic tubes: a three-dimensional numerical
model. New York J. Math., 7:281–302, 2001.

[4] C. D. Eggleton and A. S. Popel. Large deformation of red blood cell ghosts in a simple shear flow.
Phys. Fluids, 10:1834–1845, 1998.

[5] L. J. Fauci and A. L. Fogelson. Truncated newton method and modeling of complex immersed elastic
structures. Comm. Pure Appld. Math., 46:787–818, 1993.

[6] L. J. Fauci and C. S. Peskin. A computational model of acquatic animal locomotion. J. Comp. Phys.,
77:85–108, 1988.

[7] E. Givelberg. Modeling Elastic Shells Immersed in Fluid. PhD thesis, New York University, 1997.
[8] E. Givelberg and J. Bunn. A comprehensive three-dimensional model of the cochlea. To be published in

J. Comput. Phys.
[9] E. Givelberg, J. J. Bunn, and M. Rajan. Detailed simulation of the cochlea: Recent progress using

large shared memory parallel computers. In Proceedings of the 2001 International Mechanical
Engineering Congress, New York, November 2001.

[10] P. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit, G. Pike, and K. Yelick. Titanium language
reference manual. Technical Report UCB//CSD-01-1163, Computer Science Division (EECS),
University of California, Berkeley, 2001.

[11] E. Jung and C. S. Peskin. Two-dimensional simulation of valveless pumping using the immersed
boundary method. SIAM J. Sci. Comput., 23:19–45, 2001.

[12] M.-C. Lai and C. S. Peskin. An immersed boundary method with formal second order accuracy and
reduced numerical viscosity. J. Comp. Phys., 160:705–719, 2000.

[13] D. M. McQueen and C. S. Peskin. Computer-assisted design of pivoting-disc prosthetic mitral valves.
J. Thorac. Cardiovasc. Surg., 86:126–135, 1983.

[14] D. M. McQueen and C. S. Peskin. Shared-memory parallel vector implementation of the immersed
boundary method for the computation of blood flow in the beating mammalian heart. J.
Supercomputing, 11:213–236, 1997.

[15] C. S. Peskin. Flow patterns around heart valves: A digital computer method for solving the equations
of motion. PhD thesis, Albert Einstein College of Medicine, 1972.

[16] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.

12 E. GIVELBERG AND K. YELICK

[17] C. S. Peskin and D. M. McQueen. A general method for the computer simulation of biological systems
interacting with fluids. In Proc. of SEB Symposium on Biological Fluid Dynamics, Leeds, England,,
July 1994.

[18] C. S. Peskin and B. F. Printz. Improved volume conservation in the computation of flows with
immersed elastic boundaries. J. Comp. Phys., 105:33–46, 1993.

[19] Siu Man Yau. Experiences in using titanium for simulation of immersed boundary biological systems.
Master’s Report, May 2002.

[20] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance java dialect. Concurrency: Practice
and Experience, 10(11-13), September-November 1998.

[21] L. Zhu and C. S. Peskin. Simulation of a flapping filament in a flowing soap film by the immersed
boundary method. Submitted to J. Comput. Phys.

Computer Science Division, University of California, Berkeley
E-mail address: givelber@eecs.berkeley.edu
E-mail address: yelick@eecs.berkeley.edu

