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Abstract

Titanium is an explicitly parallel dialect of JavaTM designed for high-performance
scientific programming. It offers object-orientation, strong typing, and safe memory
management in the context of a language that supports high performance and scal-
able parallelism. We present an overview of the language features and demonstrate
their use in the context of the NAS Parallel Benchmarks, a benchmark suite of com-
mon scientific kernels. We argue that parallel languages like Titanium provide greater
expressive power than conventional approaches, thereby enabling more concise and
expressive code and minimizing time to solution. Moreover, the Titanium implemen-
tations of three of the NAS Parallel Benchmarks can match or even exceed the per-
formance of the standard Fortran/MPI implementations at realistic problem sizes and
processor scales, while still using far cleaner, shorter and more maintainable code.
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1 Introduction
Titanium is an explicitly parallel dialect of Java designed for high performance and pro-
grammability for scientific computing. Titanium leverages Java’s object-oriented pro-
gramming model to allow programmers to build complex irregular data structures, which
are increasingly important in scientific applications. For instance, there are Titanium
implementations for Adaptive Mesh Refinement (AMR) [28], a contractile torus simu-
lation [18], and an Immersed Boundary simulation (for biological applications) [16].

Titanium also extends Java with a powerful multidimensional array abstraction, lightweight
objects, and a template mechanism for parameterized types. For large-scale parallelism, it
replaces Java’s thread model with a Single Program Multiple Data (SPMD) style of paral-
lelism in which a fixed number of threads are created a program startup. In addition, the
language and associated libraries have support for global barrier synchronization and col-
lective communication, as well as implicit communication through a shared address space.
The shared address space is partitioned into spaces that are logically associated with each
thread, so that application writers can control data layout and the language implementation
can efficiently map these layouts onto distributed memory and shared memory hardware.
Titanium runs on most single and parallel processor machines, from laptops and desktop
machines to shared memory multiprocessors and clusters of networked computers.

In this paper we present three case studies of application benchmarks written in Ti-
tanium, using each to highlight some of the language features and performance charac-

4



teristics of the language. The benchmarks are taken from the NAS Parallel benchmark
suite [1] and reflect three important computational methods used in scientific computing:
stencil operations on a rectangular 3D mesh (Multigrid, or NAS MG); iterative solvers
on a sparse matrix (Conjugate Gradient, or NAS CG); and spectral methods on a regular
3D mesh (Fourier Transform, or NAS FT). The language analysis presented in this paper
previously appeared in a joint paper with Bonachea and Yelick [11]. This report gives
a more detailed analysis of the performance of each benchmark, illustrating some of the
optimization techniques that Titanium programmers can use and how they affect perfor-
mance. We present performance data on serial, parallel, and communication performance
on several different cluster-based machines, and also compare the performance to standard
implementations written in Fortran with MPI [19].

Our results show that Titanium programs are significantly shorter than those written
in Fortran with MPI, and we present some program fragments to highlight the elegance
of the Titanium solutions. These programmability advantages are especially noticeable
on applications that extensively use the Titanium array facilities. The performance story
is more complicated, but overall quite positive. The global address space model offers
some performance advantages relative to two-sided message passing, and the Titanium
compilation strategy of translating serial portions of the code to C works very well on
some platforms, but is highly dependent on the quality of the backend C compilers. We
will give a detailed analysis of the performance of each benchmark and identify some
performance tradeoffs that are revealed from these case studies.

2 Experimental Methodology
In order to compare performance between languages, we measured the performance of the
Titanium and Fortran with MPI implementations on four platforms: an Itanium 2 cluster
with a Myrinet interconnect, an Opteron cluster with InfiniBand, an Alpha cluster with
Elan3, and a G5 cluster with InfiniBand. Complete platform details are in appendix A.
In addition, appendix B has details concerning input sizes for each benchmark’s problem
classes. In this paper, class A (the smallest problem size) was used for serial and small
parallel runs, while classes C and D (larger problems) were used for larger parallel runs.

During data collection, each data point was run three times on the same set of nodes,
with only the minimum times being reported. In addition, for a given number of proces-
sors, the Fortran and Titanium codes were both run on the same nodes (to ensure consis-
tency). In all cases, performance variability was low, and the results are reproducible.
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3 Multigrid (MG)
The NAS MG benchmark performs multigrid calculations over a regular cubic domain in
order to iteratively solve the Poisson equation. The main data structure is a hierarchy of
grids, where each grid level represents the same physical domain at varying degrees of
discretization. In order to move between these levels, grids can be either coarsened or
prolongated. The multigrid computation descends from the finest grid level to the coarsest
and back in what is known as a V-cycle. At each grid level, nearest-neighbor (stencil)
operations are done at each point.

These 3D grids are partitioned across processors by first halving the most significant
dimension, then the next most significant dimension, and finally the contiguous dimension
in each sub-grid. This process is then repeated until there is a sub-grid for every processor.
This procedure limits the processor count to powers of two.

Since stencil operations are performed at every point in a sub-grid, the border points
may need values that are located on remote sub-grids. In order to handle this, one-deep
layers of points called ghost cells are allocated around each processor’s sub-grids. These
ghost cells are used to locally store the remote values needed by each sub-grid’s border
points, thereby eliminating the need for expensive fine-grained communication. In addi-
tion, the entire domain is periodic, so processors that own blocks at the edge of the global
domain communicate with processors at the other edge of the domain in a torus-like fash-
ion. In this case, ghost cells are used to enforce these periodic boundary conditions.

3.1 Titanium Features in the Multigrid Benchmark
This section describes the main Titanium features used in the NAS MG benchmark, includ-
ing Titanium’s multidimensional array abstraction, distributed arrays, and static annotation
of data locality.

3.1.1 Titanium Arrays

The NAS benchmarks, like many scientific codes, rely heavily on arrays for the main data
structures. The three benchmarks use different types of arrays: CG uses simple 1D arrays
to represent the vectors and a set of 1D arrays to represent a sparse matrix; both MG and
FT use 3D arrays to represent a discretization of physical space.

Titanium extends Java with a powerful multidimensional array abstraction that pro-
vides the same kinds of subarray operations available in Fortran 90. Titanium arrays are
indexed by points and built on sets of points, called domains. Points and domains are
first-class entities in Titanium – they can be stored in data structures, specified as literals,
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passed as values to methods and manipulated using their own set of operations. For exam-
ple, the class A version of the MG benchmark requires a 2563 grid with a one-deep layer
of surrounding ghost cells, resulting in a 2583 grid. Such a grid can be constructed with
the following declaration:

double [3d] gridA = new double [[-1,-1,-1]:[256,256,256]];

The 3D Titanium array gridA has a rectangular index set that consists of all points [i, j, k]
with integer coordinates such that −1 ≤ i, j, k ≤ 256. Titanium calls such an index set
a rectangular domain with Titanium type RectDomain, since all the points lie within
a rectangular box. Titanium arrays can only be built over RectDomains (i.e. rectan-
gular sets of points), but they may start at an arbitrary base point, as the example with a
[−1,−1,−1] base shows. This allows programmers familiar with C or Fortran arrays to
choose 0-based or 1-based arrays, based on personal preference and the problem at hand.
In this example the grid was designed to have space for ghost regions, which are all the
points that have either -1 or 256 as a coordinate.

The language also includes powerful array operators that can be used to create alterna-
tive views of the data in a given array, without an implied copy of the data. For example,
the statement:

double [3d] gridAIn = gridA.shrink(1);

creates a new array variable gridAIn which shares all of its elements with gridA that
are not ghost cells. This domain is computed by shrinking the index set of gridA by
one element on all sides. gridAIn can subsequently be used to reference the interior
elements of gridA. The same operation can also be accomplished using the restrict
method, which provides more generality by allowing the index set of the new array view
to include only the elements referenced by a given RectDomain expression, e.g.:
gridA.restrict(gridA.domain().shrink(1)), or a using RectDomain lit-
eral: gridA.restrict([[0,0,0]:[255,255,255]]).

Titanium also adds a looping construct, foreach, specifically designed for iterating
over the points within a domain. More will be said about foreach in section 5.1.1, but
here we demonstrate the use of foreach in a simple example, where the point p plays
the role of a loop index variable:

foreach (p in gridAIn.domain()) {
gridB[p] = applyStencil(gridA, p);

}

The applyStencilmethod may safely refer to elements that are one point away from p
since the loop is over the interior of a larger array. This one loop concisely expresses itera-
tion over multiple dimensions, corresponding to a multi-level loop nest in other languages.
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A common class of loop bounds and indexing errors is avoided by having the compiler and
runtime system keep track of the iteration boundaries for the multidimensional traversal.

3.1.2 Stencil Computations Using Point Literals

The stencil operation itself can be written easily using constant offsets. At this point the
code becomes dimension-specific, and we show the 2D case with the stencil application
code shown in the loop body (rather than a separate method) for illustration. Because
points are first-class entities, we can use named constants that are declared once and re-
used throughout the stencil operations in MG. Titanium supports both C-style preprocessor
definitions and Java’s final variable style constants. The following code applies a 5-point
2D stencil to each point p in gridAIn’s domain, and then writes the resulting value to
the same point in gridB.

final Point<2> NORTH = [0,1], SOUTH = [0,-1],
EAST = [1,0], WEST = [-1,0];

foreach (p in gridAIn.domain()) {
gridB[p] = S0 * gridAIn[p] +

S1 * (gridAIn[p + NORTH] + gridAIn[p + SOUTH] +
gridAIn[p + EAST ] + gridAIn[p + WEST ] );

}

The full MG code used for benchmarking in section 3.2 includes a 27-point stencil
applied to 3D arrays. The Titanium code, like the Fortran code, uses a manually-applied
stencil optimization that eliminates redundant common subexpressions, a key optimization
that is further explained by Chamberlain et al [7].

3.1.3 Distributed Arrays

Titanium supports the construction of distributed array data structures using the global
address space. Since distributed data structures are built from local pieces rather than
declared as a distributed type, Titanium is referred to as a “local view” language by Cham-
berlain, Deitz, and Snyder [7]. The generality of Titanium’s distributed data structures are
not fully utilized in the NAS benchmarks because the data structures are simple distributed
arrays. Titanium also supports trees, graphs or adaptive structures like those used by Wen
and Colella [28]. Nevertheless, the general pointer-based distribution mechanism com-
bined with the use of arbitrary base indices for arrays provides an elegant and powerful
mechanism for shared data.
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myBlock myBlock myBlock
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Figure 1: A distributed data structure built for MG by calling the exchange operation.

The following code is a portion of the parallel Titanium code for the MG benchmark.
It is run on every processor and creates the blocks distributed array that can access any
processor’s portion of the grid.

Point<3> startCell = myBlockPos * numCellsPerBlockSide;
Point<3> endCell =
startCell + (numCellsPerBlockSide - [1,1,1]);

double [3d] myBlock = new double[startCell:endCell];

// "blocks" is used to create "blocks3D" array
double [1d] single [3d] blocks =
new double [0:(Ti.numProcs()-1)] single [3d];

blocks.exchange(myBlock);

// create local "blocks3D" array
// indexed by 3D block position
double [3d] single [3d] blocks3D =
new double [[0,0,0]:numBlocksInGridSide - [1,1,1]]
single [3d];

// map from "blocks" to "blocks3D" array
foreach (p in blocks3D.domain()) {
blocks3D[p] = blocks[procForBlockPosition(p)];

}
First, each processor computes its start and end indices by performing arithmetic op-

erations on Points. These indices are then used to create the local 3D array myBlock.
Every processor then allocates the 1D array blocks, in which each element is a refer-
ence to a 3D array. The local blocks are then combined into a distributed data structure
using the exchange keyword, which performs a gather-to-all communication that stores
each processor’s contribution in the corresponding element of the blocks array. Figure 1
illustrates the resulting data structure for an execution on three processors.

Now blocks is a distributed data structure, but it maps a 1D array of processors to
blocks of a 3D grid. To create a more natural mapping, a 3D array called blocks3D
is introduced. It uses blocks and a method called procForBlockPosition (not
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shown) to establish an intuitive mapping from a 3D array of processor coordinates to
blocks in a 3D grid. The indices for each block are in global coordinates, and these blocks
are designed to overlap on some indices; these overlapped areas will serve as ghost regions.

Relative to data-parallel languages like ZPL or HPF, the “local view” approach to
distributed data structures used in Titanium creates some additional bookkeeping for the
programmer during data structure setup – programmers explicitly express the desired lo-
cality of data structures through allocation, in contrast with other systems where shared
data is allocated with no specific affinity and the compiler or runtime system is responsi-
ble for managing the placement and locality of data. However, Titanium’s pointer-based
data structures are not just restricted to arrays. They can also be used to express a set of
discontiguous blocks, like in AMR codes, or an arbitrary set of objects. Moreover, the
ability to use a single global index space for the blocks of a distributed array means that
many advantages of the global view still exist, as will be demonstrated in the next section.

3.1.4 Domain Calculus

A common operation in any grid-based code is updating ghost cells according to values
stored on other processors or boundary conditions in the problem statement. An example
of this is shown in figure 3. Ghost cells, a set of array elements surrounding each sub-grid,
cache values belonging to the neighboring grids in the physical space of the simulation.
Since adjacent sub-grids have consecutive interior cells, each sub-grid’s ghost cells will
overlap the neighboring grid’s interior cells. Therefore, simple array operations can be
used to fill in these ghost regions. Again, this migrates the tedious business of index
calculations and array offsets out of the application code and into the compiler and runtime
system. The entire Titanium code for updating one plane of ghost cells is as follows:

// use interior as in stencil code
double [3d] myBlockIn = myBlock.shrink(1);
// update overlapping ghost cells of neighboring block
blocks[neighborPos].copy(myBlockIn);

The array method A.copy(B) copies only those elements in the intersection of the index
domains of the two array views in question. Using an aliased array for the interior of
the locally owned block (which is also used in the local stencil computation), this code
performs copy operations only on ghost values. Communication will be required on some
machines, but there is no coordination for two-sided communication, and the copy from
local to remote could easily be replaced by a copy from remote to local by swapping the
two arrays in the copy expression.

In addition, the arbitrary index bounds of Titanium arrays allows for a global index
space over the blocks distributed data structure. As seen, this makes it simple to select
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and copy the cells in each sub-grid’s ghost region. It is also used to simplify the code in
the more general case of adaptive meshes.

Similar Titanium code is used for updating the other five planes of ghost cells, except
in the case of the boundaries at the end of the problem domain. In those situations, the
MG benchmark uses periodic boundary conditions, and an additional array view operation
is required:

// update one neighbor’s overlapping ghost cells
// across periodic boundary by logically
// shifting the local grid across the domain
blocks[neighborPos].copy(myBlockIn.translate([-256,0,0]));

The translate method translates the indices of myBlockIn across the problem
domain, creating a new view that allows the copymethod to correctly enforce the periodic
boundary conditions.

3.1.5 Distinguishing Local Data

The blocks distributed array contains all the data necessary for the computation, but
one of the pointers in that array references the local block which will be used for the lo-
cal stencil computations and ghost cell surface updates. Titanium’s global address space
model allows for fine-grained implicit access to remote data, but well-tuned Titanium ap-
plications perform most of their critical path computation on data that is either local or has
been copied into local memory. This avoids fine-grained communication costs which can
limit scaling on distributed-memory systems with high interconnect latencies. To ensure
the compiler statically recognizes the local block of data as residing locally, we declare
a reference to this thread’s data block using Titanium’s local type qualifier. The original
declaration of myBlock should have contained this local qualifier. Below we show an
example of a second declaration of such a variable along with a type cast:

double [3d] local myBlock2 =
(double [3d] local) blocks[Ti.thisProc()];

By casting the appropriate grid reference as local, the programmer is requesting the
compiler to use more efficient native pointers to reference this array. This potentially
eliminates some unnecessary overheads in array access, like dynamic checks of whether a
global array access references local data. As with all type conversion in Titanium and Java,
the cast is dynamically checked to maintain type safety and memory safety. However, the
compiler provides a compilation mode which statically disables all the type and bounds
checks required by Java semantics to save some computational overhead in production
runs of debugged code.
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Timed Non-commented Code
Declarations Communication Computation FFTW

CG- Fortra Fort+MPI 14 27 99
CG- TitaniuTitanium 41 28 45
FT- FortranFort+MPI 399 121 162 3
FT- Titaniu Titanium 148 3 46 6
MG- Fortra Fort+MPI 60 552 203
MG- TitaniuTitanium 76 37 84

Total Non-commented code
CG- Fortra Fort+MPI 693
CG- TitaniuTitanium 670
FT- FortranFort+MPI 1131
FT- Titaniu Titanium 553
MG- Fortra Fort+MPI 1524
MG- TitaniuTitanium 589
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Figure 2: Timed region line count comparison

3.1.6 The MG Benchmark Implementation

The MG benchmark takes advantage of several of Titanium’s most powerful features, as
described in the previous sections. Almost all of the benchmark’s computational methods
employ stencils on a 3D mesh, which can be concisely expressed using Titanium arrays.
In addition, updating the ghost cells surrounding the grid is greatly simplified by the use of
Titanium’s built-in domain calculus operations. Titanium’s support for one-sided commu-
nication and a partitioned global address space relieves programmers from the traditionally
error-prone two-sided message passing model of MPI.

Figure 2 presents a line count comparison for the Titanium and Fortran/MPI implemen-
tations of the benchmarks, breaking down the code in the timed region into categories of
communication, computation and declarations. Comments, timer code, and initialization
code outside the timed region are omitted from the line counts. The figure’s large disparity
in communication and computation line counts demonstrates that Titanium is easily more
concise than Fortran/MPI for expressing the Multigrid algorithm. This productivity im-
provement stems from both simpler communication due to array copy operations and the
leveraging of Titanium array features for local stencil computations.

While the Titanium MG code is algorithmically similar to the Fortran MG code, it is
completely rewritten in the Titanium paradigm. The only real algorithmic difference is
that the Fortran MG code divides work equally over all processor throughout all levels
in the multigrid hierarchy, while the Titanium code performs all work on one processor
below a certain multigrid level. This optimization was done to minimize small messages
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Figure 3: A 2D version of two different ways of updating ghost cells (the numbered
blocks). The left figure shows two phases of communication. First, every sub-grid’s two
blocks labeled “1” are simultaneously populated. Then, when the blocks labeled “2” are
updated, the prior phase allows them to correctly update the corner ghost cells. This cor-
responds to Ti-6msg in 3D. In the right figure, all 9 blocks are filled in simultaneously in
one phase. This corresponds to Ti-27msg in 3D.

and reduce overall running time, but it slightly increases the Titanium line count. Such
algorithmic optimizations are much simpler to implement in Titanium due to its expressive
power.

3.2 Multigrid Performance
3.2.1 Titanium Hand Optimizations

Almost all of the communication in the MG benchmark involves updating ghost cells. In
order to determine the fastest method for this update, two versions of the Titanium code
were tested, as shown in figure 3. In the first version, all updates are performed by properly
coordinating the messages passed in each dimension. Since the MG benchmark is a 3D
problem, there are three phases of communication, separated by three barriers. During
each of these phases, the top and bottom planes for a specific dimension are concurrently
updated. Thus, in all, each processor sends up to 6 almost equally-sized messages during
each update, but with three barriers for synchronization. This version is called Ti-6msg.

The second version, designated Ti-26msg, forgoes synchronization at the expense of
extra messages. Therefore, there is only one communication phase followed by a single
barrier. While the total communication volume is the same as Ti-6msg, each processor
may send up to 26 messages in order to update each processor block’s faces, edges, and
corners. Some of these 26 messages will be very small; corner messages will only update
a single double, while edge messages will update a maximum of a few hundred doubles.
However, all four experimental platforms support RDMA, all messages are being sent
using nonblocking array copy, and only one barrier is required. Thus, this version may do
better than Ti-6msg on some platforms.
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Figure 4: A comparison of the mean time (over all processors) spent updating ghost cells
in MG using synchronized (Ti-6msg) and unsynchronized (Ti-26msg) communication. The
timings include barrier and synchronization times for fairness.

Figure 4 shows the time spent in communication for updating ghost cells. Absolute
performance can only be compared across machines for identical problem sizes and pro-
cessor counts, so the smaller class C problem in the upper left should not be compared
to the other three. In general, the differences in communication time between the two
versions are small– the 6 message version is faster than the 26 message version on all
platforms except the Opteron/Infiniband cluster. We have no clear explanation for the dif-
ference in behavior between the two Infiniband systems, since the 6 message version is
faster on the G5 cluster but slower on the Opteron. However, we know that communi-
cation time is a function of the processor, compiler, and the memory system in addition
to the network itself. Given the small gap between the two curves, we suspect that small
differences in tuning the compiler, or low level systems software could well change the
ordering of these lines.
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Figure 5: Log-log graphs illustrating the strong scaling of Titanium at various MG problem
sizes. At the lowest processor count for a given class, the speedup is defined to be the
number of processors. All speedups at higher processor counts are relative to this speedup.

3.2.2 Scalability

An important aspect of any parallel program is the ability to scale well with greater num-
bers of processors. In our scaling study, we chose not to use “weak scaling”, a popular
scaling approach that increases the problem size proportionally with the number of pro-
cessors. This type of scaling would have introduced problem sizes that are not pre-defined
NAS problem classes, thereby preventing us from reporting official NAS Parallel Bench-
mark timings. Instead, we chose to study the strong scaling (fixed problem size) of the
Titanium MG benchmark for three problem classes, since a single problem size would
have been impractical for the wide range of processor counts used.

Figure 5 shows the scaling results for classes A, C, and D (specified in appendix B),
where the timings are the best of the two versions introduced in section 3.2.1. The baseline
for each problem class is the smallest processor count, which is set to be perfect speedup.
All other speedups are relative to this point.
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Figure 6: A comparison of MG computation rates between Fortran with MPI and Titanium.
Only the largest runs for each problem size are shown.

The figure shows that the Titanium MG benchmark scales linearly over every platform,
problem size, and processor count. Since the total computation is load-balanced and inde-
pendent of the number of processors, the time spent in computation should scale linearly
with the number of processors.

The total communication, meanwhile, is also load-balanced, but does increase with
more processors. When the processor count is doubled, each processor block is halved,
resulting in the total surface area increasing, but not doubling. Since ghost cells are present
on the surface of each processor block, the total number of ghost cells also increases, but
does not double. However, since the number of processor blocks has doubled, the number
of ghost cells per processor actually decreases. Therefore, ignoring network contention,
each processor is sending less data, so the communication time should also scale well.
In actuality, network contention is also an issue, along with the fact that more processors
need to complete their communication before proceeding. These effects are diminished,
however, since the majority of the MG running time is spent in computation.

3.2.3 Large-Scale Performance

We have seen that the Titanium MG benchmark scales well, but we have not yet compared
its performance against other languages. We finally do so in figure 6, where we compare
fairly large runs of MG written in Titanium and Fortran with MPI.

The graph shows that Titanium achieves tens of gigaflops on three of the four plat-
forms, and almost reaches 100 GFlops/sec on the Alpha. However, it does not perform
as well as the Fortran code. The Fortran code performs only marginally better on the
Opteron and G5 machines, but does significantly better on the Itanium and Alpha plat-
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Figure 7: A comparison of the mean time (over all processors) spent updating ghost cells
by Titanium and Fortran with MPI. Note that the timings include barrier and synchroniza-
tion times for fairness.

forms. Whether this performance gap is due to computation, communication, or both
needs to be determined.

3.2.4 Titanium vs. MPI

First, the communication times for both languages were compared, as shown in figure 7. It
shows that Titanium does convincingly better on the InfiniBand machines, specifically the
Opteron and the G5. However, these are also the two machines where Fortran performs
slightly better overall. If Titanium is performing faster communication, it seems that the
Fortran computation time is fast enough to beat Titanium overall.

On the other two machines, the Itanium and the Alpha, Titanium or Fortran does better
depending on the processor count. Overall, these are the machines where Titanium does
significantly worse than Fortran. Again, this would indicate that the Fortran computation
is faster than that of Titanium.
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Figure 8: A comparison of serial running times between Titanium and Fortran. This is a
good measure of computational speed.

A note of explanation is needed for the Alpha/Elan3 communication times. Prior
benchmarks have shown that Titanium does better than MPI on this network, but figure 7
seems to contradict this for some processor counts. In actuality, there is greater variability
in the Titanium communication timings for this platform, and since the mean times are
displayed, the mean Fortran timings sometimes do better. The reason for this variability in
Titanium’s communication time is unclear. The MG communication is load-balanced, but
network contention, among a host of other factors, could play a role.

3.2.5 Serial Performance

The previous section suggests that computation in Titanium is significantly slower than
Fortran on the Itanium and Alpha machines, and may be marginally slower on the Opteron
and G5 machines. To determine if this is so, a comparison was done of MG serial run-
ning times in Titanium and Fortran. By eliminating any network communication, this
comparison should give a good sense of how fast computation is being performed in both
languages. As seen in figure 8, the prior section’s predictions are confirmed.

There are two possible reasons for this serial performance gap. First, since the Tita-
nium compiler produces C code, the C compiler may lose performance from translating
mechanically generated source for which it is not tuned. Second, the Fortran compiler
may generate better machine code than the C compiler, especially on scientific codes.
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4 Fourier Transform (FT)
The FT benchmark uses 3D Fast Fourier Transforms (FFTs) to solve a partial differential
equation over several time steps. Each 3D FFT is actually performed as a series 1D FFTs
across each dimension of a regular 3D grid. Therefore, we parallelize the problem by
partitioning the grid into slabs; this allows each slab to execute 1D FFTs in two of the
dimensions locally. However, in order to perform the final 1D FFT, an all-to-all transpose
is required.

The Titanium FT code calls the FFTW library [13] for the local 1D FFTs, so for the
sake of fairness, the Fortran FT code was modified to do the same. Both implementations
follow the same general algorithm; they both perform two local 1D FFTs, followed by
a global transpose, and finally another local 1D transform. However, there are algorith-
mic differences between the two implementations that were not changed. The Titanium
algorithm takes full advantage of nonblocking array copy in the 3D FFT by overlapping
computation with communication. On the other hand, the Fortran/MPI 3D FFT is bulk
synchronous, so the computation and communication each occur in different phases. De-
spite these differences, we believe that the performance comparison is a fair one, since the
original NAS Benchmarks paper [1] states that “the choice of data structures, algorithms,
processor allocation, and memory usage are all (to the extent allowed by the specifica-
tion) left open to the discretion of the implementer”. The paper also justifies Titanium’s
use of nonblocking array copy by asserting that “programmers are free to utilize language
constructs that give the best performance possible on the particular system being studied.”

Although both languages call the FFTW library for the 1D FFTs, the strides involved in
the two versions differ. The Fortran version only executes unit-to-unit 1D FFTs, meaning
that a local transpose is required. In contrast, the Titanium version executes two strided
FFTs, one of which helps to avoid the local transpose, as well as a unit-to-unit transform.

The communication pattern is also different between the two versions. Titanium’s
FT implementation optimizes the all-to-all transpose by taking full advantage of the one-
sided communication model [2], while Fortran again uses MPI’s two-sided messaging.
The specifics involved are discussed in sections 4.2.1 and 4.2.4.

4.1 Titanium Features in the Fourier Transform Benchmark
The FT benchmark illustrates several useful Titanium features, both for readability and
performance. Since it is heavily dependent on computation with Complex numbers, the
Complex class was declared to be immutable for efficiency. To make the code using the
Complex class more readable, several methods employ operator overloading. To access
specialized libraries, the Titanium code uses cross-language calls. Finally, nonblocking
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Java Version
public class Complex {

private double real, imag;
public Complex(double r, double i)

{ real = r; imag = i; }
public Complex add(Complex c)

{ ... }
public Complex multiply(double d)

{ ... }
...

}
/* sample usage */

Complex c = new Complex(7.1, 4.3);
Complex c2 = c.add(c).multiply(14.7);

Titanium Version
public immutable class Complex {

public double real, imag;
public Complex(double r, double i)
{ real = r; imag = i; }

public Complex op+(Complex c)
{ ... }

public Complex op*(double d)
{ ... }

...
}

/* sample usage */
Complex c = new Complex(7.1, 4.3);
Complex c2 = (c + c) * 14.7;

Figure 9: Complex numbers in Java and Titanium

array copy increased the speed of data transfer.

4.1.1 Immutables and Operator Overloading

The Titanium immutable class feature provides language support for defining application-
specific primitive types (often called “lightweight” or “value” classes). These types allow
for the creation of user-defined unboxed objects that are passed directly, analagous to C
structs. As a result, they avoid the pointer-chasing overheads and allocation that would
otherwise be associated with the use of tiny objects in Java.

One compelling example of the use of immutables is for defining a Complex number
class, which is used to represent the complex values in the FT benchmark. Figure 9 com-
pares how one might define a Complex number class using either standard Java Objects or
Titanium immutables.

In the Java version, each complex number is represented by an Object with two fields
corresponding to the real and imaginary components, and methods provide access to the
components and mathematical operations on Complex objects. If one were then to define
an array of such Complex objects, the resulting in-memory representation would be an
array of pointers to tiny objects, each containing the real and imaginary components for
one complex number. This representation is wasteful of storage space; by imposing the
overhead of storing a pointer and an Object header for each complex number, the required
storage space can easily be doubled. More importantly for scientific computing purposes,
such a representation induces poor memory locality and cache behavior for operations
over large arrays of such objects. Finally, compared to standard mathematical notation,
the method-call syntax required for performing operations on the Complex Objects in
standard Java is clumsy.
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Titanium allows easy resolution of the listed performance issues by adding the im-
mutable keyword to the class declaration, as shown in the figure. This one-word change
declares the Complex type to be a value class, which is stored as an unboxed type in the
containing context (e.g. on the stack, in an array, or as a field of a larger object). The
figure illustrates the framework for a Titanium-based implementation of Complex using
immutables and operator overloading, which mirrors the implementation provided in the
Titanium standard library (ti.lang.Complex) that is used in the FT benchmark.

Immutable types are not subclasses of java.lang.Object, and induce no overheads for
pointers or Object headers. They are also implicitly final, which means they never pay
execution-time overheads for dynamic method-call dispatch. An array of Complex im-
mutables is represented in memory as a single contiguous piece of storage containing all
the real and imaginary components, with no pointers or Object overheads. This representa-
tion is significantly more compact in storage and efficient in runtime for computationally-
intensive algorithms such as FFT.

The figure also demonstrates the use of Titanium’s operator overloading, which allows
one to define methods corresponding to the syntactic arithmetic operators applied to user
classes (the feature is available for any class type, not just immutables). This allows a
more natural use of the + and ∗ operators to perform arithmetic on the Complex instances,
allowing the client of the Complex class to handle the complex numbers as if they were
built-in primitive types.

4.1.2 Cross-Language Calls

Titanium allows the programmer to make calls to kernels and libraries written in other
languages, enabling code reuse and mixed-language applications. This feature allows
programmers to take advantage of tested, highly-tuned libraries, and encourages shorter,
cleaner, and more modular code. Several of the major Titanium applications make use of
this feature to access computational kernels such as vendor-tuned BLAS libraries.

Titanium is implemented as a source-to-source compiler to C, which means that any li-
brary offering a C interface is potentially callable from Titanium. Because Titanium has no
JVM, there is no need for a complicated calling convention (such as the Java JNI interface)
to preserve memory safety. 1 To perform cross-language integration, programmers simply
declare methods using the native keyword, and then supply implementations written in C.

The Titanium NAS FT implementation featured in this paper calls the FFTW [13]

1The Berkeley Titanium compiler uses the Boehm-Weiser conservative garbage collector [4] for auto-
matic memory management, eliminating the need to statically identify the location of all pointers at runtime,
at a small cost in collector precision and performance relative to copying garbage collectors that are typically
used by standard Java implementations.
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library to perform the local 1D FFT computations, thereby leveraging the auto-tuning
features and machine-specific optimizations of its FFT kernel implementation. Although
the FFTW library does offer a 3D MPI-based parallel FFT solver, our benchmark only
uses the serial 1D FFT kernel; Titanium code is used to create and initialize all the data
structures, as well as to orchestrate and perform all the interprocessor communication
operations.

One of the challenges of the native code integration with FFTW was manipulating
the 3D Titanium arrays from within native methods, where their representation as 1D C
arrays is exposed to the native C code. This was a bit cumbersome, especially since the
FT implementation intentionally includes padding in each row of the array to avoid cache-
thrashing. However, it was only because of Titanium’s support for true multidimensional
arrays that such a library call was even possible, since the 3D array data is stored natively
in a row-major, contiguous layout. In contrast, Java’s layout of “multidimensional” arrays
is as 1D arrays of pointers to 1D arrays. Such a layout is likely not contiguous, making
such library calls all but impossible.

4.1.3 Nonblocking Array Copy

Titanium’s explicitly nonblocking array copy library methods helped in implementing a
more efficient 3D FFT, as shown for a three-processor execution in figure 10.

The Fortran code performs a bulk-synchronous 3D FFT, whereby each processor per-
forms two local 1D FFTs, then all the processors collectively perform an all-to-all com-
munication, followed by another local 1D FFT. This algorithm has two major performance
flaws. First, because each phase is distinct, there is no resulting overlap of computation
and communication - while the communication is proceeding, the floating point units on
the host CPUs sit idle, and during the computation the network hardware is idle. Secondly,
since all the processors send messages to all the other processors during the global trans-
pose, the interconnect can easily get congested and saturate at the bisection bandwidth of
the network (which is often significantly less than the aggregate node bandwidth in large-
scale cluster systems). This can result in a much slower communication phase than if the
same volume of communication were spread out over time during the other phases of the
algorithm.

Both these issues can be resolved with a slight reorganization of the 3D FFT algo-
rithm employing nonblocking array copy. The new algorithm, implemented in Titanium,
first performs a local strided 1D FFT, followed by a local unit-strided 1D FFT. During
this unit-strided 1D FFT, a processor sends a message as soon as the remote processor’s
portion of the current local plane is computed. By staggering the messages throughout
the computation, the network is less likely to become congested and is more effectively
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Figure 10: Illustration of the FFT all-to-all transpose, where the dotted lines indicate the
original layout of the grid. The Fortran code completes the FFT computation in a pro-
cessor slab before starting the global transpose. In contrast, the Titanium code sends ei-
ther slabs or pencils (but not both) as soon as they are computed. The diagram shows
the slabs/pencils that constitute the first plane of P0’s initial slab. By sending these
slabs/pencils using nonblocking array copy, Titanium can overlap computation and com-
munication.

utilized.
Moreover, we send these slabs using nonblocking array copy, addressing the other is-

sue with the original algorithm. Nonblocking array copy allows us to inject the message
into the network and then continue with the local FFTs, thus overlapping most of the com-
munication costs incurred by the global transpose with the computation of the second FFT
pass. When correctly tuned, nearly all of the communication time can be hidden behind
the local computation. The only communication costs that can never be hidden through
overlap are the software overheads for initiating and completing the non-blocking oper-
ations. Our GASNet communication system has been specifically tuned to reduce these
host CPU overheads to the bare minimum, thereby enabling effective overlap optimiza-
tions such as those described here. Reorganizing the communication in FT to maximize
overlap results in a large performance gain, as seen in figure 11.

4.1.4 The FT Benchmark Implementation

Figure 2 shows that the Titanium implementation of FT is considerably more compact
than the Fortran/MPI version. There are three main reasons for this. First, over half the
declarations in both versions are dedicated to verifying the checksum, a Complex number
that represents the correct “answer” after each iteration. The Titanium code does this a
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bit more efficiently, thus saving a few lines. Secondly, the Fortran code performs cache
blocking for the FFTs and the transposes, meaning that it performs them in discrete chunks
in order to improve locality on cache-based systems. Moreover, in order to perform the
1D FFTs, these blocks are copied to and from a separate workspace where the FFT is
performed. While this eliminates the need for extra arrays for each 1D FFT, any perfor-
mance benefit hinges on how quickly the copies to and from the workspace are done. The
Titanium code, on the other hand, allocates several arrays for the 3D FFT, and therefore
does not do extra copying. It is consequently shorter code as well. Finally, Titanium’s
domain calculus operations allow the transposes to be written much more concisely than
in Fortran, resulting in a 121 to 3 disparity in communication line counts.

4.2 Fourier Transform Performance
4.2.1 Titanium Hand Optimizations

Similarly to MG, we again try to reduce the communication time, now by optimizing
the FFT all-to-all transpose shown in figure 10. In the baseline version of the Titanium
code, designated Ti-bl slabs, each processor sends a slab as soon as it is computed using a
blocking array copy operation. Since the communication blocks, it does not overlap with
the computation.

The first optimization is to make the array copy operation nonblocking. This version,
called Ti-nbl slabs, allows the processor to inject a processor slab into the network and
immediately start computing the next slab, thereby allowing communication-computation
overlap.

The second optimization, called Ti-nbl pencils, goes one step further. Instead of send-
ing slabs, each pencil within each slab is sent using nonblocking array copy as soon as it is
computed. Since smaller messages are being sent more rapidly, network bandwidth should
be better utilized. However, too many network messages may also have the opposite effect
of inducing network congestion.

Figure 11 shows the time spent in communication for the FFT global transpose. In
order to do a fair comparison, the measured time includes barrier and synchronization
times as well. As expected, we see that Ti-nbl slabs always does better than Ti-bl slabs.
The performance of Ti-nbl pencils is more erratic, however. Due to the sheer number of
messages being injected into the portion of the network connecting the running nodes,
there were some problems running this code at small processor counts. Occasionally the
network would deadlock and no timing results were returned. At other times, the network
would become congested and cause the timings to be unexpectedly long. But at higher
processor counts, Ti-nbl pencils performs comparably to Ti-nbl slabs.
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Figure 11: A comparison of the mean time (over all processors) spent in the FFT all-to-all
transpose. Version Ti-bl slabs sends slabs using blocking array copy, Ti-nbl slabs sends
slabs using nonblocking array copy, and Ti-nbl pencils sends nonblocking pencils. The
timings include barrier and synchronization times for fairness.

A note of explanation is needed for the G5/InfiniBand machine. Due to network layer
issues, there was some difficulty running the FT Class C problem at 64 processors. As a
result, only the Ti-bl slabs is shown for that particular case.

4.2.2 Scalability

To see how well the best Titanium version of the FT benchmark scales, we again examine
log-log speedup graphs, as shown in figure 12. It shows that at small scales (class A), FT
scales sublinearly on the Itanium and Alpha machines. The class A problem does scale
linearly on the Opteron, however, and is superlinear on the G5. At larger scales (class C
and D), FT scales linearly (and sometimes superlinearly) over all platforms.

In order to explain these effects, we need to look at the computation and the com-
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Figure 12: Log-log graphs illustrating the strong scaling of Titanium at various FT problem
sizes. At the lowest processor count for a given class, the speedup is defined to be the
number of processors. All speedups at higher processor counts are relative to this speedup.

munication separately. The computation is load-balanced, and the total computation is
independent of the processor count (in this case). By doubling the number of processors,
each processor slab is divided in two. When sending slabs, this may speed up one of the
strided 1D FFTs because the stride through memory is shorter. Ignoring this effect, the
computation should scale linearly.

The communication is also load-balanced, and the total communication volume is also
the same regardless of the number of processors. Since we are using only one processor per
node, when the processor count is doubled, the number of running nodes in the network
doubles as well. This allows us to spread the communication volume over more links
in the network, reducing the probability of congestion. In addition, each processor now
sends half as much data, so ignoring network congestion, all blocking communication
should also scale linearly. However, section 4.2.1 showed that the best Titanium version
usually sends nonblocking slabs, so much of the communication time is overlapped with
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Figure 13: A comparison of FT computation rates between Fortran with MPI and Tita-
nium. Only the largest runs for each problem size are shown.

computation. This reduces any effects from communication scaling.

4.2.3 Large-Scale Performance

Now we compare Titanium’s performance to that of Fortran. There is some non-FFT com-
putation in the FT benchmark, but it is minimal. Consequently, since FFTW is being used
for both Titanium and Fortran, any performance disparities should largely be attributable
to communication.

Figure 13 shows that the best Titanium version does better than Fortran for large scales
(classes C and D) on all platforms. Since the best Titanium version is usually nonblocking
slabs, hiding much of the global communication time within computation helps Titanium
significantly outperform the Fortran/MPI code.

4.2.4 Titanium vs. MPI

To confirm that communication is the reason for performance gap between Titanium and
Fortran, only the communication times are compared in figure 14. It confirms that Ti-
tanium’s one-sided communication performs much better than MPI’s send-and-receive
paradigm for the NAS FT code.

5 Conjugate Gradient (CG)
The CG benchmark uses the conjugate gradient method to iteratively solve for the smallest
eigenvalue of a large, sparse symmetric positive-definite matrix. Therefore, the main data
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Figure 14: A comparison of the mean time (over all processors) spent in the FFT all-to-all
transpose by Titanium and Fortran with MPI. The timings include barrier and synchro-
nization times for fairness.

structure is a sparse matrix in Compressed Sparse Row (CSR) format, as discussed in
section 5.1.1. Almost all of the benchmark’s computations derive from sparse matrix-
vector multiply (SpMV), which requires an indirect array access for each matrix nonzero.

The problem is parallelized by blocking the matrix in both dimensions. Specifically,
the matrix’s columns are halved, followed by the rows, and then repeating until there a
block for every processor. Therefore, the number of processor columns will either be
double or equal to the number of processor rows. Figure 15 illustrates how the matrix is
distributed over 4 and 8 processors. In general, since the matrix is sparse, each processor
will receive an unequal number of nonzeros. As a result, the problem is not perfectly load-
balanced like MG and FT. However, since the matrix is relatively uniform, the problem
is not severely load-imbalanced either. Each processor also receives the sections of the
source and destination vectors that are needed for the local SpMV.

This type of partitioning necessitates that every processor sum together all of the des-
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Figure 15: The parallel partitioning of CG over 4 and 8 processors. Note that each re-
duction in the 4-processor case is over 2 processors, while in the 8-processor case each
reduction is over 4 processors.

tination vectors in its processor row. This reduction is efficiently implemented in NAS CG
by using a dispersion algorithm requiring log2 c phases, where c is the number of processor
columns. The synchronization of this algorithm in Titanium is discussed in section 5.2.1.

5.1 Titanium Features in the Conjugate Gradient Benchmark
The following sections highlight the Titanium features used to implement the CG bench-
mark that have not been discussed in prior sections. We focus primarily on Titanium
foreach loops and the implementation of pairwise synchronization for producer-consumer
communication.

5.1.1 Foreach Loops

As described in section 3.1.2, Titanium has an unordered loop construct called foreach that
simplifies iteration over multidimensional arrays and provides performance benefits. If the
order of loop execution is irrelevant to a computation, then using a foreach loop to traverse
the points in a RectDomain explicitly allows the compiler to reorder loop iterations to max-
imize performance– for example, by performing the automatic cache blocking and tiling
optimizations described by Pike [24, 25]. It also simplifies bounds-checking elimination
and array access strength-reduction optimizations.

Another example of the use of the foreach loop can be found in the sparse matrix-
vector multiplies performed in every iteration of the CG benchmark. The sparse ma-
trix below is stored in CSR format, with data structures illustrated in Figure 16. The
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// the following represents a matrix in CSR format
// all three arrays were previously populated
RectDomain<1> [1d] rowRectDomains; // RectDomains of row indices
int [1d] colIdx; // column index of nonzeros
double [1d] a; // nonzero matrix values
...
public void multiply(double [1d] sourceVec, double [1d] destVec) {
foreach (i in rowRectDomains.domain()) {
double sum = 0;
foreach (j in rowRectDomains[i])
sum += a[j] * sourceVec[colIdx[j]];

destVec[i] = sum;
} }

Figure 16: The Compressed Sparse Row (CSR) format for representing a sparse matrix,
followed by Titanium code for sparse matrix-vector multiply.

rowRectDomains array contains a RectDomain for each row of the matrix. Each Rect-
Domain contains its row’s first and last indices for arrays colIdx and a.

In the figure, the logical sparse array has four rows (one of which is entirely zero)
containing a total of six nonzero data values. The nonzero values are stored contiguously
in the array a, while arrays rowRectDomains and colIdx hold the metadata used to
perform sparse indexing. More specifically, the index of the rowRectDomains array is
the row number and the value of the colIdx array is the column number of each nonzero
value in array a.

This calculation uses nested foreach loops that highlight the semantics of foreach;
namely, that the loop executes the iterations serially in an unspecified order. The outer
loop is expressed as a foreach because each of the dot products operates on disjoint data,
so ordering does not affect the result. The inner loop is also a foreach, which indicates
that the sum can be done in any order. This allows the compiler to apply associativity and
commutativity transformations on the summation. Although these transformations may
affect the exact result, they do not affect algorithmic correctness for reasonable matrices.

30



5.1.2 Point-to-point Synchronization

Both the Titanium and Fortran NAS CG implementations use a matrix that is partitioned
in both dimensions. Portions of both source and destination vectors are replicated on the
processors that use them, so the only communication in the sparse matrix-vector product
involves reductions over each processor row (a team reduction) to perform a dot product.
The code performs this reduction using a pairwise exchange algorithm with log2 c phases,
where c is the number of processor columns, and synchronization between processor pairs
is required in each phase as data is passed. An example of the CG layout is shown in
figure 15.

Implementations using MPI for communication usually rely on the synchronization
provided by the messaging handshake, as all two-sided message-passing operations imply
both a data transfer and synchronization between sender and receiver. One-sided commu-
nication decouples data transfer from synchronization, because there is no receive opera-
tion and generally no explicit action or notification at the remote process. Consequently,
some additional action is required to achieve pairwise synchronization between producers
and consumers of a data stream in algorithms such as the CG reduction. This synchro-
nization can naively be achieved using barriers. However, as shown in section 5.2.1, a
faster method is to employ more direct and efficient techniques for point-to-point synchro-
nization between pairs of processors. This eliminates the over-synchronization overheads
imposed by using global barriers for pairwise synchronization.

Our implementation of the CG benchmark uses in-memory flags to perform pairwise
synchronization between producers and consumers during the team reduction steps of the
algorithm. Each producer-to-consumer communication is achieved using a two-step com-
munication based on standard in-memory signaling algorithms, extended to the global
address space. In the first step, the producer pushes the data from the local source memory
to a prearranged destination area on the remote consumer, using a Titanium array copy
operation that expands to an RDMA put operation on GASNet backends where that func-
tionality is available on the network hardware. When the blocking array copy returns to the
caller, this indicates remote completion of the data transfer operation (which in the case
of a cluster network is usually detected via link-level acknowledgment of the RDMA put
operation from the NIC hardware at the remote target). Once the data transfer is complete,
the producer writes a flag in an array on the remote consumer, initiating a single word put
operation notifying the consumer that data is available. Once the consumer is ready to
consume data, it spins waiting for the flag value to become non-zero and then consumes
the data which is waiting in the prearranged location.

This technique decouples data transfer from synchronization, thereby achieving the
required point-to-point synchronizing data transfer. However, it is worth noting the oper-
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ation is still one-sided in flavor– specifically, the initiator provides complete information
about the locations and sizes of all data transfers, and no explicit action is required at
the target to complete the data transfers. As a result, this method of communication can
still reap the performance benefits of fully one-sided communication, namely the use of
zero-copy transfers with no rendezvous messaging delays or eager buffering costs.

The algorithm described above is quite efficient on systems with hardware support for
shared memory, such as SMP’s and DSM systems such as the SGI Altix or Cray X-1.
However, the algorithm is less efficient for cluster networks, because the initiator waits
for the completion of the data transfer before issuing the flag write. Therefore, the one-
way latency for the synchronizing data transfer on a distributed-memory network amounts
to roughly one and a half round-trips on the underlying network. Explicitly nonblock-
ing communication can be used in some algorithms to overlap most of this latency with
independent computation and other data transfers. In the specific case of CG’s pairwise-
exchange reduction, however, there is no other independent work available for overlap.
We are exploring ways of providing a fast point-to-point synchronization mechanism that
would avoid the round-trip latency (building on existing runtime support) as well as gen-
eralizing and improving the collective communication library so it could be used in the
parallel dot product on a subset of processors.

5.1.3 The CG Benchmark Implementation

The CG benchmark demonstrates the utility of Titanium arrays and foreach loops in imple-
menting the data structures and computations for sparse matrices stored in CSR format. In
addition, the team reductions required by the 2D blocked decomposition motivate the use
of point-to-point synchronization constructs to achieve efficient pairwise synchronization
in producer-consumer communication patterns. This is a relatively new area of explo-
ration in the context of PGAS languages like Titanium where all communication is fully
one-sided and implicit.

Figure 2 illustrates the line count comparison for the timed region of the Fortran/MPI
and Titanium implementations of the CG benchmark. In contrast with MG, the amount of
code required to implement the timed region of CG in Fortran/MPI is relatively modest,
primarily owing to the fact that no application-level packing is required or possible for this
communication pattern. In addition, MPI’s message passing semantics implicitly provide
pairwise synchronization between message producers and consumers, so no additional
code is required to achieve that synchronization.

The Titanium implementation is comparably concise. Despite the extra code required
to achieve pairwise synchronization, the amount of communication code is roughly equiv-
alent. The computation code is 54 lines shorter in Titanium, but there are 27 additional
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Figure 17: A comparison of the mean time (over all processors) spent in SpMV reduction
using barriers (Ti-barrier) and point-to-point synchronization (Ti-point to point).

declaration lines. However, this difference is due to the use of object-orientation and mod-
ularity in implementing the vector operations as methods in a Titanium Vector class. In the
Fortran code, those same operations are implemented by expanding the vector operations
inline as many very similar do loops, resulting in less readability.

5.2 Conjugate Gradient Performance
5.2.1 Titanium Hand Optimizations

As mentioned in section 5, the CG SpMV reduction is performed as a dispersion algorithm
requiring log2 c phases, where c is the number of processor columns. If r is the number of
processor rows, we know that c = r when the processor count is square, and c = 2r when
it is not (as shown in figure 15). Therefore, when we double a square processor count (e.g.,
go from 4 to 8 or from 16 to 32), we add an extra dispersion phase to the reduction.

In addition, an independent reduction is being performed in each processor row. Thus,
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when we double a non-square processor count (e.g., go from 8 to 16 or from 32 to 64),
we introduce another processor row. However, since all processor rows perform an equal
amount of work, an extra processor row lessens the size of the reduction in the other
processor rows.

In order to minimize the time Titanium spent in communication, two different ways of
implementing the SpMV reduction were compared. The first method uses barriers to syn-
chronize after each dispersion phase, while the second method uses point-to-point commu-
nication. The results, as shown in figure 17, indicate that point-to-point synchronization
does better on every platform and processor count, although the timings are sometimes
very close. This is not an unexpected result, as discussed in section 5.1.2. The barrier
implementation does a global synchronization after each dispersion phase, when all that
is required is synchronization for each processor row. The point-to-point version, in gen-
eral, is a better solution because it only synchronizes between the sending and receiving
processors.

Another notable feature of the graphs is that instead of a smooth line or curve, multiple
peaks are present. Much of this can be attributed to the parallel partitioning of the problem.
In general, the square processor counts perform faster reductions than the next higher
processor count because they perform one fewer phase in the dispersion algorithm.

5.2.2 Scalability

Figure 18 displays how the best Titanium CG code scales at different sizes. Since the point-
to-point code in the previous section always performed better, this is the code for which
the results are shown. We see that, in general, Titanium scales well over all platforms and
processor counts.

Since SpMV takes the great majority of the time spent in CG, we examine the SpMV
computation and communication phases separately in order to understand the speedup
graphs. The time spent in SpMV computation dominates the reduction time, so scaling the
computation is more important in this case.

The sparse matrix is fairly uniform, so partitioning it does not introduce much load
imbalance. In addition, the total computation volume is independent of processor count,
so partitioning the matrix does not introduce extra computation either. In fact, due to cache
effects, the partitioning actually increases the computational rate per processor. For larger
processor counts, each processor receives a smaller matrix block that is more likely to fit
into cache, thereby allowing for faster computational rates. For example, for the Class C
problem on the Alpha, going from 32 to 64 processors increases the average per processor
SpMV computation rate from 163 MFlops/sec to 224 MFlops/sec. The increase is not
typically this large, but the computation time does scale superlinearly.
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Figure 18: Log-log graphs illustrating the strong scaling of Titanium at various CG prob-
lem sizes. At the lowest processor count for a given class, the speedup is defined to be the
number of processors. All speedups at higher processor counts are relative to this speedup.

However, the total communication involved in the SpMV reduction, while load-balanced,
does increase with processor count. Introducing an extra processor row does not increase
the total communication, but adding a processor column does, since a new phase is added
to the dispersion algorithm. In general, the communication volume per processor de-
creases with increased processor count, but the extra phases added to the dispersion al-
gorithm slow the reduction time significantly. As a result, the time spent in the reduction
should not be expected to scale linearly. But, since the reduction time is less than the time
in SpMV computation, these effects are diminished, and the overall speedup is linear.

5.2.3 Large-Scale Performance

Figure 19 compares the performance of both Titanium and Fortran at the largest processor
counts for each problem size. It shows that Titanium’s performance trails that of Fortran
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Figure 19: A comparison of CG computation rates between Fortran with MPI and Tita-
nium. Only the largest runs for each problem size are shown.

in every case. The reasons for this gap are analyzed in the next two sections.

5.2.4 Titanium vs. MPI

First, we examine the time spent in the SpMV reduction, as shown in figure 20. It again
shows the same peaks in the Titanium performance that we saw in section 5.2.2. More
importantly, though, it shows that outside the Itanium platform, the Titanium performance
is worse than MPI. As fully explained in section 5.1.2, this is due to the way point-to-point
synchronization is implemented in the one-sided communication paradigm. Titanium re-
quires 1.5 round trips for each phase of the dispersion– first it does a data transfer, and
then after this completes, it updates a remote flag. The remote processor spins until this
flag is updated before proceeding. This is in contrast to Fortran, which depends on the
synchronization between sender and receiver to notify the remote processor as to when the
data transfer is finished. Therefore, communication is a factor in Titanium’s slower overall
CG performance.

5.2.5 Serial Performance

Now we examine whether computation is also a factor in this performance gap. As seen in
figure 21, this is indeed the case. Titanium’s serial running times are greater than Fortran’s
times over all platforms. The majority of the computation is sparse matrix-vector prod-
ucts, which entails indirect memory accesses. The Fortran code is generating faster code
for performing these indirect accesses than the Titanium code. In general, we have seen
that serial Fortran running times on the Itanium and Alpha are significantly faster than
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Figure 20: A comparison of the mean time (over all processors) spent in SpMV reduction
by Titanium and Fortran with MPI.

Titanium, but on the Opteron and the G5 platforms, the running times are similar. These
results are another confirmation of that.

6 Related Work
The prior work on parallel languages is too extensive to survey here, so we focus on
three current language efforts (ZPL, CAF, and UPC) for which similar studies of the NAS
Parallel Benchmarks have been published. All of these studies consider performance as
well as expressiveness of the languages, often based on the far-from-perfect line count
analysis that appears here.
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Figure 21: A comparison of serial running times between Titanium and Fortran. This is a
good measure of computational speed.

6.1 ZPL
ZPL is a data parallel language developed at the University of Washington. A case study
by Chamberlain, Deitz and Snyder [6, 7] compared implementations of NAS MG across
various machines and parallel languages (including Fortran/MPI, ZPL [26], Co-Array For-
tran [22], High Performance Fortran [14], and Single-Assignment C). They compared the
implementations in terms of running time, code complexity and conciseness. Our work
provides a similar evaluation of Titanium for MG, but then extends their work by including
two other NAS benchmarks.

One of the major conclusions of their study was a suggested correlation between lan-
guage expressiveness and a language feature they refer to as a “global view” of compu-
tation. Specifically, they find that “languages with a local view of computation require 2
to 8 times as many lines of code as those providing a global view, and that the majority
of these lines implement communication.” By their definition, Titanium provides a local
view, because loops execute over a local portion of a data structure, rather than globally.
In contrast, a data parallel language like ZPL expresses computation at a global level and
requires the compiler to convert this into local computation.

Our work demonstrates that “local view” languages (like Titanium) need not suffer in
conciseness, even when compared to benchmarks that are naturally expressed in the more
restrictive data-parallel model. For instance, the MG code size is comparable between the
two languages (192 lines total in ZPL, compared to 197 lines in Titanium). The construc-
tion of distributed data structures does generally require slightly more application code in
Titanium than ZPL, because the partitioning of global indices into local ones is explicit.
However, the inclusion of Titanium’s powerful domain abstraction makes this code sim-
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ple and concise. Moreover, the generality of Titanium’s distribution mechanism means
that it can easily express irregular, distributed, pointer-based data structures that would be
cumbersome at best in data-parallel languages.

At the time the ZPL study was done, there was little evidence regarding the perfor-
mance of one-sided communication, and their expectation was that the one-sided commu-
nication model would not perform well on distributed memory architectures. Our work on
GASNet [15] and that of Nieplocha et al on ARMCI [21] show that in fact one-sided com-
munication can often outperform two-sided message-passing communication. Moreover,
the results of this paper in the context of Titanium and others in the context of CAF [23]
and UPC [2] show that these performance advantages carry over to application-level per-
formance in the NAS benchmarks.

6.2 Co-Array Fortran
Co-Array Fortran (CAF) is an explicitly parallel, SPMD global address space extension
to Fortran 90 initially developed at Cray Inc [22]. A compiler is available for the Cray
X1, and an open-source compiler for a dialect of CAF is available from Rice University.
The Rice compiler translates CAF programs to Fortran 90 with calls to a communication
system based on GASNet or ARMCI [20]. The Rice CAF compiler has been used in sev-
eral studies with the NAS Parallel Benchmarks, demonstrating performance comparable
to, and often better than, the Fortran/MPI implementations [8, 10, 23].

CAF has a built-in distributed data structure abstraction that specifies the distribution
by identifying a co-dimension that is spread over the processors. Therefore, layouts are
more restrictive than in languages like ZPL, HPF, and certainly Titanium. However, com-
munication is more visible in CAF than most languages because only statements involving
the co-dimension can result in communication. Because CAF is based on F90 arrays, it
has various array statements (which are not supported in Titanium) and subarray opera-
tions (which are). Although the ZPL study includes a CAF implementation of MG, the
implementation used was heavily influenced by the original Fortran/MPI MG code, and
therefore expectedly had comparable length. In contrast, our Titanium implementations
were written from scratch to best utilize the available language features and demonstrate
the productivity advantages.

6.3 UPC
Unified Parallel C (UPC) [27] is a parallel extension of ISO C99 [5] that provides a global
memory abstraction and communication paradigm similar to Titanium. UPC currently
enjoys the most widespread support of the PGAS languages, with a number of vendor
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implementations and two open-source implementations. The Berkeley UPC [3, 9] and
Intrepid UPC [17] compilers use the same GASNet communication layer as Titanium,
and Berkeley UPC uses a source-to-source compilation strategy analogous to the Berkeley
Titanium compiler and Rice CAF compiler.

El Ghazawi et al. [12] ported the Fortran/MPI versions of the NAS Parallel Bench-
marks into UPC, with mixed performance results relative to MPI. Bell et al [2] reim-
plemented some of the NAS parallel benchmarks from scratch in UPC, using one-sided
communication paradigms and optimizations made possible by the Partitioned Global Ad-
dress Space abstraction. These implementations delivered performance improvements of
up to 2x over the Fortran/MPI implementations.

7 Conclusions
As we have shown, Titanium’s features are well-suited to express the common scientific
paradigms found in the NAS Parallel Benchmarks: nearest neighbor computation on a 3D
mesh (MG), FFT with an all-to-all transpose on a 3D mesh (FT), and 2D sparse matrices
with indirect array accesses (CG). As a rough indication of expressiveness, figure 2 shows
that Titanium code is significantly shorter than Fortran w/MPI. However, Titanium’s fea-
tures are not limited to these problems, as they actually support more general distributed
data layouts and irregular parallelism patterns than these problems require.

Concerning performance, computation and communication need to be examined sep-
arately. As seen in the serial performance comparisons with Fortran, Titanium’s compu-
tational speed is comparable on the G5 and Opteron platforms, but significantly slower
on the Alpha and Itanium machines across all three benchmarks. This is at least partly
attributable to the quality of the vendor-supplied C compiler used to compile Titanium’s
generated C code.

As for communication, Titanium’s one-sided message passing model allows for a mod-
ification in the FT algorithm so that much of the all-to-all communication is overlapped
with other computation. This results in a large performance gain over the Fortran code.
In the MG benchmark, there is not as much opportunity for such overlap, but overall, the
communication time slightly favors Titanium. However, Titanium’s one-sided communi-
cation becomes a disadvantage in the CG benchmark. During the CG reduction step, a
remote flag has to be set after each data transfer so that the remote processor knows to pro-
ceed. This extra communication prevents Titanium from doing as well as MPI. However,
there are solutions for this within the one-sided communication model, and is a project for
future work.
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A Experimental Platforms
Itanium 2/ Opteron/ Alpha/ G5/
Myrinet InfiniBand Elan3 InfiniBand

Location UC Berkeley/ NERSC/ PSC/ Virginia Tech/
CITRIS Cluster Jacquard Lemieux System X

Node Count 32 320 750 1100
Node Type Dual 1.3 GHz Dual 2.2 GHz Quad 1 GHz Dual 2.3 GHz

Itanium 2 Opteron Alpha 21264C PowerPC G5
Proc FPUs 2 2 2 (one for mult) 2
Fused Mult-Add yes no no yes
Proc Peak 5.2 GFlops/s 4.4 GFlops/s 2.0 GFlops/s 9.2 GFlops/s
L1 Data Cache 32 KB (no float) 64 KB 64 KB 32 KB
L2 Cache 256 KB 1 MB 8 MB (off-chip) 512 KB
L3 Cache 3 MB (on-chip) None None None
Node Memory 4 GB 4 GB 4 GB 4 GB
Titanium v3.86 v3.74 v3.74 v3.74
compiler
Titanium back-
end C compiler

Intel C v9.0 Pathscale v2.0 Compaq C v6.5 IBM XLC v6.0
for OS X

Fortran Intel Fortran Intel Fortran HP Fortran IBM XLF
compiler v9.0 v8.1 v5.5A-3548 v8.1
OS Software Linux 2.4.20 Linux Enter-

prise Server
9

Compaq Tru64
UNIX

Apple Mac OS
X 10.3.9

Network Myricom
Myrinet LANai
XP PCI-X
M3F-PCIXD-2

Mellanox
Cougar In-
finiBand 4x
HCA

Quadrics Qs-
Net1 Elan3 w/
dual rail (one
rail used)

Mellanox
Cougar In-
finiBand 4x
HCA
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B Problem Classes
Benchmark Class Matrix/Grid Dim Iterations Parallel Partitioning

CG A (1.4 · 104)2 15 2D partitioning–
B (7.5 · 104)2 75 Equal blocks of
C (1.5 · 105)2 75 sparse matrix
D (1.5 · 106)2 100

FT A 2562 · 128 6 1D partitioning–
B 512 · 2562 20 Equal slabs of grid
C 5123 20
D 2048 · 10242 25

MG A 2563 4 3D partitioning–
B 2563 20 Equal blocks of grid
C 5123 20
D 10243 50
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