
Analysis of a Contractile Torus Simulation in Titanium

Sabrina A. Merchant1

1Computer Science Division, University of California, Berkeley, CA 94720

Abstract

 The purpose of this paper is to analyze the use of the
Titanium language, a high-performance Java dialect, and
parallel programming practices on an application of the
Immersed Boundary (IB) Method for simulating biologi-
cal processes. We will compare two Titanium implemen-
tations of the IB Method in terms of performance, devel-
oper productivity, and use of Titanium features. The first
implementation makes use of Titanium’s scientific com-
puting and parallelization features. The second uses
Java features for data structures and Titanium for paral-
lelism. We analyze the libraries using a contractile torus
simulation as a sample application, a simple model of
elastic fibers suspended in viscous, incompressible fluid.
The implementation of the simple model precedes the
realization of a more complex model of the mammalian
heart, discussed in the final section of the paper.

1. Overview of Titanium

 The Titanium language extends Java and includes func-
tionality for scientific computing applications, such as a
global address space, parallelization primitives, and
multi-dimensional arrays. An implementation of Tita-
nium was developed at Berkeley that is publicly avail-
able. Titanium is optimized for scientific applications
such as Multigrid [3] and particle simulations. The cur-
rent driving application is a simulation of the mammalian
heartbeat using the Immersed Boundary Method.
 Berkeley’s implementation does not require special
hardware support. Programs written in Titanium can run
on shared-memory and distributed memory architectures,
as well as clusters of shared memory multiprocessors.
The compiler translates Titanium into C with lightweight
messaging layers. Currently, the compiler runs on the
Cray T3E using Shmem, the IBM SP using LAPI, the
Compaq/Quadrics clusters using Shmem, and on the SGI
Origin 2000 using POSIX threads. In addition, an MPI
implementation of the runtime system provides portability
across essentially any cluster.
 Titanium features can be grouped into two categories
parallelization features and support for scientific comput-
ing. Titanium’s support for parallelism includes a global
address space, communication and synchronization primi-
tives, and local/global references. Titanium’s support for

scientific applications includes multi-dimensional arrays,
immutable classes, memory management control, and
compatibility with scientific computing libraries written
in other languages.

1.1 Parallelism

 Titanium uses a Single Program Multiple Data (SPMD)
model of computation, so each processor runs a copy of
the same program. Processes may work independently by
branching on process-specific data, and there is no im-
plicit synchronization. The Titanium compiler prevents
deadlock on global synchronization primitives by ensur-
ing that all processes execute the same sequence of global
synchronizations.
 In addition, Titanium support for parallelism includes
global synchronization, a global address space, and proc-
essor communication methods. Global synchronization
is done with the barrier method, which has the following
properties: a process will wait at the barrier until all other
processes reach the barrier, and all processes execute the
same sequence of barriers. The compiler performs global
synchronization analysis by examining single-valued
variables, variables that have the same value on every
process. For example, conditional expressions with barri-
ers must be single-values, meaning that all processes will
take the same branch.
 Communication between processes occurs using the
broadcast or exchange methods. The broadcast method
is a one-to-all communication, while the exchange
method is an all-to-all communication. Both methods
have implied global synchronization or barrier of all
processes.
 Because of the global address space, following a refer-
ence can be quite expensive on some machines where it
leads to a communication event. The performance cost is
significant on distributed-memory architectures, where
local pointers are accessed faster and take less space than
global pointers. To make this cost visible to the pro-
grammer, without forcing explicit communication, the
Titanium language offers two kinds of references: global
and local. A remote reference may point to either local or
remote data, while a local one points to probably local
data. All references are global by default, which simpli-
fies porting of threaded Java code to Titanium.

1.2 Support for Scientific Applicatoins

 Titanium arrays are true multi-dimensional arrays,
independent of Java arrays. They are indexed by points,
which are grouped into index sets called domains. Tita-
nium has a rich domain calculus for determining subdo-
mains, transposes, and intersections. To loop over the
elements of Titanium arrays, the iterator foreach is used.
Titanium does not specify an order of iteration for the
foreach loop allowing the compiler to reorder iterations
for optimizations. Distributed arrays are not handled ex-
plicitly but can be created using the exchange operation.
Most applications have a specific data organization across
processors; therefore one can create a distributed array
structure tailored to their application.
 Immutable classes were introduced into the language to
increase performance of small objects. Objects in Java
are accessed through references, which add overhead that
reduces performance especially when many small objects
are used in a program. Restrictions on immutable classes,
such as final non-static fields and no inheritance, allow
the compiler to pass them by value similar to C structs.
Immutable classes can then effectively treated as Java
primitive types and arrays of immutable objects can be
stored contiguously in memory.
 Memory management in Titanium is done using region-
based memory management. Objects and data are allo-
cated in a private or shared region, and regions are freed
with a region-delete operation. Region-based memory
management allows explicit programming for locality and
performs better than garbage collection on distributed-
memory machines.
 In addition, Titanium allows C code to be linked to Tita-
nium code using Titanium’s native C interface. The na-
tive interface allows compatibility with scientific comput-
ing libraries. Also in cases with non-uniform access to
Titanium arrays, C kernels can be written and interfaced
to Titanium.

2. History of IB Implementations

 The Immersed Boundary Method is a mathematical
method for simulating the fluid dynamics of elastic mate-
rial immersed in viscous incompressible fluid. The
method was invented by Charles Peskin and Dave
McQueen at the Courant Institute at NYU [1]. The
method has been used in several simulations of biological
processes including platelet clotting[7], cochlea function
in the ear [4], and of particular interest the mammalian
heart [2]. The original implementation of the IB method
was written in Fortran 77 by Dave McQueen and is the
code that several other implementations have been vali-
dated against. Following this implementation, other
simulation writers modified the code for their model sys-

tem. Recently, there was an effort by Nat Cohen (NYU)
to design a library for the IB method general enough for
all IB simulations. Cohen’s library was written in Fortran
with shared memory vectorization and has been used to
model a contractile torus and human heartbeat. However,
the Fortran implementation is limited to use on shared
memory machines, such as the C90 and SGI Origin. This
limits the problem size and ability to parallelize over hun-
dreds of processes.
 Titanium expands these limits because it can be used on
distributed memory architectures using up to 300+ proc-
esses allowing a theoretically large problem size (10243+)
and performance improvement. The first version of the
Titanium Immersed Boundary Method (Tigibs) library
was written by Siu Man Yau. Three simulations were
written using his library: the contractile torus, cochlea
plates, and mammalian heart. [8] He used much of Tita-
nium’s scientific computing support and parallelism.
Subsequently, we added several optimizations to Tigibs
that will be discussed in the Section 4.
 The second version in Titanium was written by Ed
Givelberg [4]. Givelberg’s use of the Immersed Bound-
ary Method was driven by simulation of cochlear function
in the inner ear. He ported his C version of the method to
Titanium in the form of a general library. Givelberg’s IB
library handles more generic materials such as discs,
which are necessary for cochlea simulation. The IB li-
brary uses Java arrays and independently written domain
calculus and uses Titanium for parallelism and native
interfaces. Currently the IB library is being optimized
and the cochlea application is being written using the li-
brary. We have implemented a contractile torus simula-
tion using the IB library, which we will use to analyze the
library and compare with the same simulation written
with the Tigibs library.
 We will compare the two libraries – Tigibs and IB – in
terms of readability, performance and scaling. First, we
give an overview of the immersed boundary method, then
detail the differences between the two implementations,
present a performance model of both implementations,
next discuss the performance of the two versions, and
finally we discuss the transition to a complete heart simu-
lation.

3. Overview of IB Method

 To demonstrate Titanium as used by a scientific appli-
cation, we use a model system, the contractile torus. The
torus consists of thousands of elastic fibers shaped into a
torus structure that is covered by a grid of fluid. An elas-
tic fiber behaves as a group of springs attached to each
other to form a circle. Each spring exerts force according
to the law F = kx, where k is the spring constant and x is
the displacement, on the spring preceding and following
it. The fiber also exerts force on the fluid, the NS equa-

tions are solved to find the fluid velocity, and then the
fibers are moved according to the fluid velocity.
 The number of timesteps varies with the problem, for
example the heart simulation is performed in 57,000
timesteps while the torus takes 512 timesteps. Each
timestep consists of four phases of the Immersed Bound-
ary Method: calculating the fiber force, spreading the
force to the fluid, solving the Navier-Stokes (NS) equa-
tion for fluid velocity, and moving the fibers at the local
fluid velocity. At the commencement of the timestep, the
fibers have been displaced and the process is repeated in
the next timestep. The phases are summarized here.

 Fiber Force Calculation: Each fiber is represented as
a set of points linked together by the springs. We calcu-
late a force for each point using an elastic spring law de-
scribed above. The force will act to pull the point’s
neighbors towards it or push its neighbors away.
 Spread Force: In this phase, each fiber point will up-
date the 4x4x4 grid of fluid cells surrounding it by adding
the fluid force that it will exert on them. The amount of
force exerted on the fluid cell by a fiber point is calcu-
lated as a smoothed Dirac Delta function of the fiber
force evaluated at the fluid cell. The force that a fluid cell
carries at the end is the sum of force exerted on it by
nearby fiber points.
 NS Solver: In the NS Solver, we first calculate the
right-hand side of the NS equation, using nearest-
neighbor updates on the fluid force grid. Then we take an
FFT of the left-hand side, and find the velocities in Fou-
rier space, followed by an inverse FFT to translate the
velocity grid back to normal space in 3d.
 Interpolate Velocity: Finally, the fiber velocity is cal-
culated from its surrounding fluid velocity, the same
4x4x4 grid of fluid points, as a sum of smoothed Dirac
Delta functions of the fluid velocities evaluated at the
fiber points. The fiber points are moved into a new posi-
tion, based on their velocities.

4. Comparison of Implementations

 Both implementations use the same force calculation
and fiber activation, but the implementations differ in
how the calculations are performed. We detail the differ-
ences between the implementations for each of the
phases. The discussion is presented in phases of the IB
method and split into detail of the Tigibs library and then
the IB library.

4.1 Fiber Structure

 Fibers are represented as space curves immersed in a
rectangular fluid grid. A fiber is a cyclic, ordered set of
fiber points residing in 3-dimensional space within the

domain of the fluid grid. Each fiber point is connected to
two other fiber points in the fiber set, and each connection
is conceptually a spring.

Tigibs: The fiber is represented by a doubly-linked list
of fiber points. Each fiber point object consists of its po-
sition, its velocity, the force exerted on it by the two
neighboring points, and pointers to its neighboring fiber
points in the linked list structure.
 Fibers often cross process regions depending on the
choice of fiber partition. To address the representation of
fibers that cross boundaries, we introduced another data
structure for storing portions of fibers that reside on a
process, which we call a fiber fragment. A fiber fragment
object consists of a pointer to the first and last fiber point
in that fragment, as well as pointers to the fragment’s
immediate neighbors on different processes. Each proc-
ess owns a Java Vector of its fiber fragments.

Figure 1: Distributed fiber structure.

 Figure 1 shows the distribution of fiber fragments in this
library. Fiber points owned by the same process are in
the same color. The partition shown is one where the
fiber fragments are owned by the owner of the underlying
fluid grid. This partition allows us to take advantage of
locality, decreasing communication in the interaction
phases. However, load balance is poor as the fibers are
concentrated in the center of the fluid domain. Also, the
force calculation requires iteration over all points in a
fiber. A partition where fibers cross process boundaries
increases communication in this phase. One partitioning
strategy takes into account locality and load balance,
called egg slicer, which assigns fiber fragments to the
corresponding fluid grid owner but balances the number
of fiber points on each process. Another partitioning
strategy does not allow fibers to cut across processes,
called spaghetti.
 Figure 3 shows both partitioning strategies for the force
calculation of the heart simulation. The spaghetti parti-
tion performs better during the force calculation but badly

for the interaction phases. Egg slicer works best overall.
The optimal partitioning strategy is easier to decide for
the more regular fiber structure of the torus. Cross-
sectional fibers should be kept intact, while longitudinal
fibers should be cut for locality, called the pizza partition.

Figure 2: IB fiber structure.

IB: Figure 2 shows the fiber structure for the IB library.
The fluid is cut into slabs and assigned to processes, and
the fibers are uncut when assigned to a process. The dif-
ferent colors represent the ownership of each fiber. In
this figure, each fiber is assigned to a different process.
Currently, locality is not taken into account, however the
number of fiber points is approximately constant for all
processes. To improve performance and scalability, fi-
bers close to each other should be distributed together.
The fibers points are maintained in an array rather than in
a linked list. Also, the library requires that the entire fiber
be located on the same process, therefore no communica-
tion occurs in this phase.

4.2 Force Calculation

 Tigibs: In the force calculation, each fiber point ac-
cesses its two neighbors, which requires communication
between processes only when the fiber point is at the be-
ginning or end of a fiber fragment. The communication
can be reduced by introducing immutables classes to en-
capsulate the coordinates. We use immutable classes to
represent the position, velocity, and force data as a tuple
of three doubles. This representation allows one to re-
duce the number of global accesses by a factor of three.
However, the use of immutable classes adds overhead
when we want to change the immutable’s value. We
must initialize a new immutable object, copy the new
values into the object, and replace the old immutable ob-

ject. We would like to retain all the performance proper-
ties of immutables but allow variables to be updated.
 Figure 3 demonstrates the performance increase with
immutables for the heart simulation. This optimization
works solely when communication is involved but does
not affect the spaghetti partition, where no communica-
tion occurs.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

 fo
rce

 ca
lc

 sp
rea

d fo
rce

 N
Sso

lve
r

 in
ter

polat
e

total
R

un
ni

ng
 T

im
e

(m
s)

Egg Slicerl Immutable Coordinate
Local Qualifier Spaghetti

Figure 3: Optimizations on Tigibs.

 Another optimization that we introduced is the explicit
use of the local qualifier. All references in Titanium are
global by default, and the compiler automatically infers
that some references are local, but local qualifier infer-
ence is not fail-proof. To gain all benefit associated with
local qualification, the programmer should explicitly de-
clare the variable as local. In the torus, the linked list
fiber representation includes local and global pointers.
Neighboring fiber points that lie at process boundaries are
left as global pointers, while internal fiber points are ex-
plicitly declared local. The local qualifier reduces the
access time and increases the application’s performance
slightly. Figure 3 also shows the performance increase
for local qualification in this phase.

Force Calculation

0
100
200
300
400
500
600
700
800
900

1000

2 4 8 16 32 64
Num procs

Ti
m

e
(m

s)

theoretical
actual

Figure 4: Performance model for force calcula-

tion.

 IB: The IB library requires that the entire fiber be lo-
cated on the same process, therefore no communication
occurs in this phase. The amount of time spent in this
phase depends entirely on how many fiber points are allo-
cated to each process. The best partitioning strategy
would be to equally distribute the fiber points.
 To develop a performance model for this section, we
assume that the number of fiber points on each process is
equal. First we look at the trend in computation cost for
this phase in Figure 22. The figure shows that this phase
has approximately 100% parallel efficiency. Since no
communication occurs, computation is the dominating
cost. The computation includes floating point operations
as well as memory operations. The ratio of floating point
operations to memory operations is approximately 0.45.
Since the cost of memory operations is so high, we use
the mflops rate to determine the performance model for
this phase. We used the following formula to model the
running time in this phase:

Time = (number of floating point operations per fiber
point) x (number of fiber points) / (serial mflops rate)

Figure 4 shows that the model is very close to the actual
behavior in this phase.

4.3 Spread Force

 This phase consists of taking the force calculated at the
fiber points and projecting the force to the fluid domain.
The force is projected using a Dirac delta function that
spreads the force from the fiber point to a 4x4x4 region of
fluid surrounding the fiber point in a 3d distribution.

Figure 5: Bounding boxes.

4.3.1 Tigibs Spread Force

Tigibs uses a bounding box algorithm to perform the delta
function interaction. This interaction phase consist of
three subphases: setting up the bounding boxes, doing
the core of the computation, and communicating results to
the appropriate process. First each process determines its
bounding box, the smallest fluid region that contains all
of the points in its list. The dimensions of the bounding
box plus padding is used for the domain of the 3d work-
space, which will hold the force spread with the delta
function after the native method call. Figure 5 demon-
strates the bounding boxes for a simplified case. The
fluid is partitioned into slabs and the fluid owners are
labeled with Pi. The fiber colors denote the fiber’s
owner. The blue boxes covering all fiber points owned
by a processor denotes the area that is the bounding box.
This subphase is memory intensive and has few floating
point operations. It’s performance will be determined by
cache behavior and memory performance.
 The core of the interaction code is written in C for per-
formance. The native code performs a for loop through
all the points in the array. Within the loop, the indices of
the 4x4x4 fluid region corresponding to each point are
calculated. The delta functions weights are determined.
The product of the weight and force is assigned to the
portion of the workspace indexed. The regions may over-
lap; therefore the force for the fluid point is the sum of all
the force components corresponding to that fluid location.
Figure 6 shows P0’s bounding box and demonstrates
spreading force from points to the fluid bounding box.
Note that the core of the interaction was written in C be-
cause random access to titanium arrays showed low per-
formance, however recent optimization to random access
improves the performance but is still four times slower
than the same code written in C. This subphase is compu-
tationally intensive and consists mainly of floating point

operations. It is expected to scale well and its perform-
ance will be determined by the speed of floating point
operations, somewhat by cache behavior, and load bal-
ance.

Figure 6: Spreading force to fluid.

 Each process owns a vertical slab of the fluid grid;
therefore the forces on the grid need to be updated by
adding the forces in the bounding boxes overlapping the
vertical slab. To accomplish this, each process gets
pointers to the bounding boxes for all processes. For
each process, it copies the remote workspace from the
destination process to a local buffer and adds the forces in
the local copy to their vertical slab.
 Also, note that communication occurs only in the last
loop and it is all-to-all. The amount of communication is
determined by the size of each process’s bounding box
and the amount of overlap with other processes’ fluid
slabs. The fiber points could be anywhere in the fluid
domain, not only within that process’s fluid slab. There-
fore, the bounding box could lie entirely within the proc-
ess’s fluid slab, overlap two or more processes’ fluid
slabs, lie completely within another processes’ fluid slab,
or cover the entire fluid domain. The communication is
determined by the spread of the points. Since the fluid is
partitioned into vertical slabs, vertical fibers located near

each other will perform the best in this phase, while hori-
zontal fibers and fibers distant from each other will per-
form worst. A good fiber partitioning strategy would be
to group points that are near each other to minimize the
size of the bounding boxes. Also, an alternative method
would be to not cut the vertical fibers for high perform-
ance in the force calculation, and cut the horizontal fibers
across processes.

4.3.2 IB Spread Force

 The fluid domain is partitioned into slabs, similar to
Tigibs, but it is partitioned further into cubes of size
4x4x4 as shown in the grid in Figure 7. The processes
maintain a list of cubes that are being used. The shaded

Figure 7: Packing the force cubes.

cubes in Figure 7 represent the cubes that correspond to
the fiber indicated. Each processor has a group of com-
plete fibers, which they have calculated the spring forces
on that need to be spread to the fluid domain. Every fiber
point in the fiber distributes its force to the fluid force
field.

 The algorithm used to spread the force at each point has
the following subphases: spreading force, packing force
cubes, sending mail, and updating force slabs. Spreading
the force consists of determining the delta function
weights for each 4x4x4 region surrounding each fiber
point, determining which cubes surround each point, and
incrementing the force field by the product of the weight
and the fiber point’s spring force. Each process maintains
a list of cubes the fiber points interact with, therefore no
redundant cubes are saved. This subphase is mostly com-
putationally intensive but has a large number of memory
operations because of determining the cube lists. To
model this subphase’s performance, we use a similar
equation as the force calculation:

Time = (number of floating point operations per fiber
point) x (number of fiber points) / (serial mflops rate)

Spread Force

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 8 16 32 64
Num Procs

Ti
m

e
(m

s)

theoretical
actual

Figure 8: Performance model for spread force.

 The number of fiber points is proportional to the running
time when the weights are computed, but the number of
cubes are relevant for maintaining the cube list. The
number of cubes depends on the spread of the fiber points
owned by each process. We simplify the model by as-
suming that the number of cubes is also proportional to
the number of fiber points, and we use number of fiber
points as the metric for performance. Increasing the
number of processes helps to a certain extent, when the
width of the fluid slabs are very narrow, causing most of
the fluid to be communicated.

Pack force cubes

0
50

100
150
200
250
300
350
400
450
500

2 4 8 16 32 64

Num procs

Ti
m

e
(m

s)

theoretical
actual

Figure 9: Performance model for pack-

ing/unpacking.

 Packing force cubes consist of flattening the cubes into
a one-dimensional Java array that can be communicated
to other processes. The one-dimensional array is referred

to as a mailbox. Packing is a memory intensive opera-
tion. The number of cubes and the caching behavior de-
termines the memory cost. To determine the number of
cubes, we assume that the maximum number of cubes are
used. We assume that the memory operations hit in the
L1 or L2 cache. Figure 5 shows the model versus the
actual number. The model in this subphase is not very
accurate because we estimate the number of cubes. If we
had a better estimate for the number of cubes, the model
would fit the data better. The equation used to determine
running time in this subphase follows:

Time = 3 x (number of cubes) x (size of cube) x (L2
cache latency)

 So far, no communication has occurred. The blocks
that overlap other processor’s fluid slabs must be sent to
those processes and their force fields updated. This
communication is done using a Mailbox system. First,
the blocks are condensed into a Java array that is sent to
the correct processor using the System.arrayCopy opera-
tion, an operation referred to as sending mail. The cost
of this subphase is determined by the network of the ma-
chine. We could use an alpha-beta model, however this
does not model the behavior well. We believe that the
barrier time is the limiting factor in this subphase, and we
model the performance by doing a linear regression of
sending mail time versus number of processes, Figure 10.

Sending mail
y = 1.2552x - 5.1381y = 8.977x + 1.9157

-10
0

10
20
30
40
50
60
70
80
90

0 20 40 60 80

send mail time - seaborg
sending mail time - lion

Linear (send mail time - seaborg)
Linear (sending mail time - lion)

Figure 10: Linear regression for sending mail.

 The communication in this phase is an all-to-all com-
munication. The amount of data to be communicated
depends on the number of blocks that overlap other proc-
essor’s fluid slabs. Like the Tigibs interaction phase, the

spread of the points determines the amount of communi-
cation. Figure 11 shows the performance model for this
subphase on an IBM SP.

Sending mail

-10

0

10

20

30

40

50

60

70

80

90

2 4 8 16 32 64

Num Procs

Ti
m

e
(m

s)

theoretical
actual

Figure 11: Performance model for sending mail.

 Updating force slabs consists of the owners of the fluid
slabs updating its own fluid slab after it unpacks the mes-
sage sent from the overlapping process. This phase con-
sists of memory operations as well as floating point op-
erations. The parallel efficiency is low (Figure 22) and
memory operations dominate, therefore we use a similar
model to packing:

Time = 3 x (number of cubes) x (size of cube) x (L2
cache latency)

This model would be more accurate if the floating point
operations were taken into account. (Figure 9)

4.4 NS Solver

 In this phase, the NS equations are solved for the fluid
velocity using the fluid force determined above. This
phase consist of transforming the knowns into fourier
space by three forward FFTs, the equations are solved
explicitly and then three inverse FFTs are done to trans-
form the unknowns (the velocities) back to normal space.

Tigibs: This library uses FFTW, a fast FFT implementa-
tion in C, to do the forward and inverse FFTs. A Tita-
nium based FFT is also implemented for platforms that do
not support FFTW. The FFT is expected to perform well,
with time complexity O (n log n). The solving of the
equations after the transformations is embarrassingly par-
allel and is expected to scale well. There is also commu-
nication of the boundaries between the slabs before the
equation solve.

FFTW

0

2000

4000

6000

8000

10000

12000

2 4 8 16 32 64
Num procs

Ti
m

e
(m

s)

theoretical
actual

Figure 12: Performance model for the ffts.

IB: This library uses FFTW explicitly for the FFT’s,
however it is written to easily interface with other FFT
libraries. The number of floating point operations is ap-
proximately C x n log n, where C is a constant chosen to
be 1.5. The serial mflops for the FFT is 160 Mflops.
The performance for the FFTs can be can be modeled
using the following equation:

Time = 6 x (C x n log n) / (serial mflops)

 After the FFTs, the boundaries of the slabs are commu-
nicated and the equations are solved explicitly. The par-
allel efficiency is fairly high, so we model the perform-
ance as if it were embarrassingly parallel.

Time = (number of floating point operations per fluid
point) x (number of fluid points) / (serial mflops rate)

Equation solve

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2 4 8 16 32 64Num procs

Ti
m

e
(m

s)

theoretical
actual

Figure 13: Performance model for the NS equa-

tion solve.

The model would be more accurate if the communication
was taken into account.

4.5 Interpolate Velocity

 After solving for the fluid velocity in the NS Solver, we
need to interpolate the fluid velocity to the fiber point
locations using the same Dirac delta function above. We
sample the velocity of the surrounding 4x4x4 region and
sum the products of the delta function weights and fluid
velocity.

4.5.1 Tigibs Interpolate Velocity

 The algorithm used is the opposite of spread force.
First, we determine the bounding box, initialize a 3d array
the size of the bounding box, and copy the fluid velocity
into it. This part requires communication as the bounding
box will likely overlap with other processes. The parti-
tioning of fibers is important here as well; the bounding
box could cover the entire region if partitioned badly.
(Figure 14) This is the only communication in this phase.
It’s performance depends on the size of the bounding
boxes. A possible optimization is to retain the bounding
box size from the spread force phase and reuse it here,
reducing the set up time but not affecting the communica-
tion time.
 The core of the interaction is again in a native C
method. The difference from the spread force phase is
that the delta function weights are multiplied by the
workspace velocities, and the sum of the products in the
4x4x4 surrounding region is put into the point array.
Again, this subphase is computationally intensive and
depends on the number of points and the speed of floating
point operations and random access to arrays. Finally,
using Titanium we copy the velocities from the point ar-
ray back to the fiber points.

Figure 14: Interpolating velocity to fibers.

 Note that the communication in this phase is similar to
the spread force phase. The larger the spread of the fiber
points, the larger the size of the fluid to be communicated.
The partitioning strategy optimized for this phase will be
similar to spread force.

4.5.2 IB Interpolate Velocity

 The velocity solved during the NS Solver phase must be
sampled and interpolated to each of the fiber points. This
phase consists of several steps: packing the velocity
cubes, sending mail, unpacking the velocity cubes, and
moving the points. The velocity is stored in the fluid
slabs after the fluid solve. The velocity is first copied
from the slabs to the mailbox, referred to as packing the
velocity cubes. The same communication descriptor is
used as in the spread phase, and the data structure is re-
used here. The cubes are copied from the fluid slabs and
flattened into the mailbox structure described previously.
The model of this subphase is similar to packing force
cubes in spread force (Figure 9), although the running
time is lower because the cubes are reused here:

Time = 3 x (number of cubes) x (size of cube) x (L2
cache latency)

 The mailbox is then communicated to other processes,
referred to as sending mail. Again, we use a linear re-
gression of sending mail time versus number of proc-
esses. (Figure 11)
 After the mail is sent, the processes unpack the cubes.
Again, this is a memory intensive operation and we use
the same model as the packing operation, Figure 9:

Time = 3 x (number of cubes) x (size of cube) x (L2
cache latency)

 Finally, the delta weights are calculated for every point
in the 4x4x4 region surrounding each fiber point, and the
product of the weight and velocity are added to the fiber
point’s position, called moving points. According to
Figure 22, the parallel efficiency is close to 100% be-
cause it is a computational phase. We use the same
model as the other computational phases (Figure 15):

 Time = (number of floating point operations per fiber
point) x (number of fiber points) / (serial mflops rate)

Move points

0

1000

2000

3000

4000

5000

6000

2 4 8 16 32 64
Num procs

Ti
m

e
(m

s)

theoretical
actual

Figure 15: Performance model for moving

points.

4.6 Complete Performance Model

 Putting all the subphases together gives us an accurate
performance model of the behavior on two machines de-
scribed in the next section. Figure 16 shows the perform-
ance model versus the actual data for the 2563 problem on
Seaborg. Figure 17 shows the same for the 1283 problem
on Lion-XL.

Total Time on Seaborg 256

0

5000

10000

15000

20000

25000

30000

35000

40000

2 4 8 16 32 64

Num Procs

Ti
m

e
(m

s)

Theoretical
Actual

Figure 16: Performance model versus actual on
Seaborg.

Total Time on Lion 128

0

1000

2000

3000

4000

5000

6000

1 2 4 8Num procs

Ti
m

e
(m

s)

theoretical
actual

Figure 17: Performance model versus actual on

Lion-XL.

5. Performance

 The torus simulation was run on an IBM SP (Seaborg)
at NERSC and a Dell PC cluster (Lion-XL) at Pennsyl-
vania State University. The specifications for both ma-
chines are given in the diagram below:

Machine Seaborg Lion-XL

Type IBM SP Dell PC
Number of CPUs per Node 16 2
Number of Nodes 416 176

CPU Clock speed 365 MHz 2.4 GHz
CPU FP results/clock 4
CPU Peak Performance 1.5 Gflops
Communication Latency 60 micro-
Communication BW 160 MB/s
Network MPI Quadrics

Table 1: Machine specifications.

 The IBM SP is a distributed-memory machine and a
latency bound machine. We expect bulk communication
to perform well but smaller messages to perform badly.
The Quadrics network on the PC cluster performs well on
small messages.

5.1 Overall Performance

 We compare the performance of several fluid grid sizes
for both implementations. Figure 18 shows that IB out-
performs Tigibs for every grid size, and the difference is

100

1000

10000

100000

1 2 4 8 16 32 64

Tigibs 64^3 Tigibs 128^3
Tigibs 256^3 IB 64^3
IB 128^3 IB 256^3

Figure 18: Total running time vs. Number of

processors on Seaborg.

greatly pronounced in the largest problem size (2563 fluid
grid). As the number of processes increases, the running
time of Tigibs decreases for problem sizes of 643 and
1283 up to a point of diminishing returns, after which
inter-node communication is too large to benefit from
parallelization. This trend may be visible for 2563 if we
could run the problem on a larger number of processes.
Although IB shows a small decrease in performance due
to inter-node communication, running time monotonically

decreases when the number of processes increases,
thereby scaling better than Tigibs.

 Comparing the performance on both machines for the
1283 problem, Figure 9, shows that both implementations
scale better on the PC cluster, possibly because of the
faster Quadrics network.

Figure 19: Running Time on the the PC cluster

5.2 Identifying Bottlenecks

 Since IB clearly outperforms Tigibs, we focus our dis-
cussion on optimizations associated with the IB library.
The first step in tuning the performance is identifying
bottlenecks. To this extent, we look at the percentage of
time in each phase of the algorithm and determine which
optimizations will cause the greatest speedup.
 Figure 20 shows the percentage of time spent in each
phase for three different grid sizes. The smaller grid sizes
(643 and 1283) have similar bottlenecks, however the larg-
est grid size (2563) shows that the NS Solver is the major
bottleneck with 44% of time. The bottleneck in the
smallest grid size is the computation of the delta function
(in spread force and move points-40%) followed by the
communication (both send mails-28%). In the middle
grid size the bottleneck is the communication (both send
mails-39%) followed by the NS solver (21%). While the
largest grid size’s slowest phase is the NS solver (44%)
followed by packing force cubes (23%).
 Optimizing the delta function calculations by 50% will
decrease the running time of the 643 problem by 20%, the
1283 problem by 12%, and the 2563 problem by 11%.
While tuning the NS solver causes the greatest gain in
performance of 9%, 11%, and 22% respectively for each
grid size. Reducing the communication by 50% will al-
low each timestep to be run in 14%ms, 19%ms, 3%ms.

Quadrics Machine - Lion-XL

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000

1 2 4 8 16

Num Processors

Ti
m

e
(m

s)

IB mpi-cluster-uni
IB gasnet-elan-uni
Tigibs mpi-cluster-uni
Tigibs gasnet-elan-uni

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

64^3-116 128^3-408 256^3 - 808

force calc spread force
pack force cubes send mail
update force slabs NS solver
pack velocity cubes send mail - interpolate
unpack velocity cubes move points

Figure 20: Percentage of time spent in phases.

 Comparing the distribution of time in the phases for
both machines shows that the communication time is less
of a bottleneck and the NS solver becomes more impor-
tant. Optimization of this phase will increase perform-
ance the most on the Quadrics machine.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Seabor g Lion-XL

moving points

unpacking veloci ty cubes

sending mai l 2

packing veloci ty cubes

NS solve

updating f or ce slabs

sending mai l

packing f or ce cubes

spr eading f or ce

f or ce calculation

Figure 21: Percentage of time spent in phases
on both machines.

0%

20%

40%

60%

80%

100%

120%

2 4 8 16 32 64

Procs
Fiberx SpreadForce

PackForceCubes SendMail

UpdateForceSlabs NSSolve

PackVelocityCubes SendMail2

UnpackVelocityCubes MovePoints

Total

Figure 22: Computation cost in parallel effi-

ciency.

Theoretical Time for 1024 problem

1

10

100

1000

10000

100000

1000000

10000000

1 2 4 8 16 32 64 128 256 512
Num procs

Ti
m

e
(m

s)

Theoretical Time on
Seaborg
Theoretical Time on
Lion

Figure 23: Performance model of 10243 torus.

5.3 Extending the Performance Model.

 We have extended the performance model described in
section 4 to predict the performance of a 10243 torus on
both machines. Figure 23 shows a plot of the theoretical
performance of the 10243 problem. On Seaborg, one
timestep takes 83 seconds on 512 processors. On Lion,
the same problem takes 33.6 seconds.

6. Future Work – Toward a Heart Simula-
tion

 The model torus sets the stage for simulation of the
mammalian heartbeat. Heart simulation requires the fiber
structure defined above and the immersed boundary
method libraries described. In addition, the heart fiber
activation varies from activation of torus fibers. Blood
vessels, which act as sources and sinks, of fluid into and
out of the heart also need to be added.
 Heart fibers are activated according to the muscle layer
the fiber belongs to and the timestep the simulation is in.
The heart consists of twelve muscle layers that can be
grouped into classes: atrial layer, ventricular layer, papil-
lary layer, etc. The atrial layer is activated during systole
(the first half of the simulation), the ventricular layer is
activated during diastole (the second half of the simula-
tion), and the papillary layer is activated at different times
during the simulation. Fiber activation consists of de-
creasing the resting length and increasing the stiffness of
the fiber, thereby causing contraction of that muscle layer.
 The size of the heart differs from the torus. The current
heart has a hard-coded grid size of 1283 and approxi-
mately 6 M fiber points. However, higher resolutions
will ultimately be needed to make new physiological dis-
coveries from the simulation.
 Sources and sinks are modeled as 4x4x4 regions in the
heart that are connected by a pipe to an imaginary reser-
voir of fluid. For sources, the reservoirs push fluid into
the region, and for sinks the reservoirs pull fluid from the
region. A modified Ohm’s law determines the volume
flow rate into or out of the heart:

(pressure at source – pressure at reservoir)/ (resistance
of the pipe)

 The pressure at the reservoirs is the blood pressures of
the cardiac vessels (the superior and inferior vena cavas,
aorta, and pulmonary artery and vein). The resistance of
the pipe is a parameter that the user can vary. Each
source is surrounded by a ring of markers (points in space
that move with the fluid but exert no force) that determine
the location of the source.
 The method of source simulation is detailed here. First,
one must determine the average location of each group of

markers. Then, sample the pressure, which is initially
zero, of the 4x4x4 region surrounding the source point.
The pressure is then used to determine the volume flow
rate using the modified Ohm’s law above. The diver-
gence of the velocity, which is the average volume flow
rate, is kept in a three-dimensional array the size of the
fluid grid. The divergence array is zero everywhere ex-
cept the regions where the sources lay and the overflow
drain. The overflow drain, located in the first two planes
at the edge of the fluid grid, is needed to maintain conser-
vation of fluid flow in/out of the heart. The NS solver
needs to be modified to include the divergence term,
which adds two FFTs to the current implementation, a
forward FFT for the divergence and an inverse FFT for
the pressure. After the new velocities and pressure have
been solved, we move the markers and begin the next
iteration with finding the new location of the sources.
 Currently, the heart simulation using the Tigibs library is
in need of a numerically correct version of the sources
and sinks in order to have a functional simulation.
Sources and sinks have been added to the heart simulation
but have a numerical bug. In addition, the heart simula-
tion needs to be written using the IB library.

7. Conclusions

 We have presented two implementations of the torus
simulation, compared the simulations in terms of algo-
rithmic organization, investigated the performance in de-
tail, and developed a performance model. The perform-
ance model can be extended to the driving application,
the heart. A heart with fluid grid resolution 1024 running
for approximately 60,000 timesteps will take 22 days to
complete. In order for this simulation to be feasible, per-
formance will need to be increased by improving the dis-
tribution of the fibers as well as increasing the perform-
ance of the NS solver.

Acknowledgements

References

1. D. McQueen and C. Peskin. A general method for the com-
puter simulation of biological systems interacting with flu-
ids. In Biological Fluid Dynamics, 1995.

2. D. McQueen and C. Peskin. Shared-memory parallel vector
implementation of the immersed boundary method for the
computation of blood flow in the beating mammalian heart.
In Journal of Supercomputing, 1997.

3. K. Datta and S. Merchant. Multigrid methods for titanium
heart simulation. CS267 class project, Fall 2001.

4. E. Givelberg, J. Bunn and M. Rajan. Detailed simulation of
the cochlea: recent progress using large shared memory par-
allel computers. In Proceedings of the 2001 International
Mechanical Engineering Congress, 2001.

5. S. L. Johnsson and D. Mirkovic. Automatic performance

tuning in the UHFFT library. In ICS, 2001.
6. S. H. Chang. Titanium benchmarks. http://www.

cs.berkeley. edu/~szuhuey/Titanium
7. A. Fogelson. A mathematical model and numerical method

for studying platelet adhesion and aggregation during blood
clotting. In Journal of Computational Physics, 1984.

8. S. Yau. Titanium generic immersed boundary software
package. Master’s thesis, University of California, Berkeley,
Computer Science Division, 2001.

