
Better Tiling and Array Contraction

for Compiling Scientific Programs ∗

Geoff Pike and Paul N. Hilfinger

Computer Science Division

University of California at Berkeley

{pike,hilfinger}@cs.berkeley.edu

Abstract

Scientific programs often include multiple loops over
the same data; interleaving parts of different loops
may greatly improve performance. We exploit this
in a compiler for Titanium, a dialect of Java. Our
compiler combines reordering optimizations such as
loop fusion and tiling with storage optimizations such
as array contraction (eliminating or reducing the size
of temporary arrays).

The programmers we have in mind are willing to
spend some time tuning their code and their com-
piler parameters. Given that, and the difficulty in
statically selecting parameters such as tile sizes, it
makes sense to provide automatic parameter search-
ing alongside the compiler. Our strategy is to op-
timize aggressively but to expose the compiler’s de-
cisions to external control. We double or triple the
performance of Gauss-Seidel relaxation and multi-
grid (versus an optimizing compiler without tiling
and array contraction), and we argue that ours is
the best compiler for that kind of program.

1 Introduction

Many scientific kernels, such as multigrid, FFT, and
matrix multiplication, are easy to write in a page
or two of code. To get state-of-the-art performance,
however, two conditions must be met: appropri-
ate optimizing transformations must be applied, and

∗This work was supported in part by the Advanced Re-
search Projects Agency of the Department of Defense un-
der contract F30602-95-C-0136, the National Science Foun-
dation under grant ACI-9619020, and the Department of
Energy under contracts W-7405-ENG-48 and DE-AC03-
765F00098. The information presented here does not nec-
essarily reflect the position or the policy of the Govern-
ment and no official endorsement should be inferred.
0-7695-1524-X/02 $17.00 (c) 2002 IEEE

parameters such as tile sizes must be chosen well.
Both conditions are met automatically, for some
specific kernels, by special-purpose packages (e.g.,
PHiPAC [1], ATLAS [29], and FFTW [7]). Our
work is a step towards meeting those two condi-
tions automatically—for any program—in a general-
purpose compiler.

In particular, our compiler is better than pre-
vious ones at optimizing Gauss-Seidel relaxation
and multigrid, and we offer an optional simulated-
annealing search over tile sizes and other parame-
ters. Thus, we allow programmers to code straight-
forwardly but still achieve great performance.

State-of-the-art transformations used in the hand-
optimization of multigrid (e.g., Douglas et al. [6] and
Sellappa and Chatterjee [24]) inspired the novel com-
piler optimizations that we describe below. The re-
sulting system is innovative for its ability to tile and
fuse loops in a natural and non-restrictive way (sec-
tion 3). When multiple loops are tiled and fused
together, efficient data reuse and array contraction
can be crucial to performance. Our variant of array
contraction (section 4) is similar to that of Strout et
al. [26], but it can realize much greater savings.

This paper summarizes highlights of the first au-
thor’s dissertation [22]. Much more detail, including
extensions for the parallel case, may be found there.
Here, we focus on sequential compiler optimizations
and assessments of their effectiveness.

2 Titanium

Our compiler optimizations are applicable to any lan-
guage commonly used for scientific programming. As
a concrete prototype, we are using Titanium, a di-
alect of Java developed at Berkeley. Details of the
language are available in a reference manual [8]. Fig-

1

foreach (p in D)

B[p] = (4 * A[p] + A[p + [1, 0]] + A[p - [1, 0]] +

A[p + [0, 1]] + A[p - [0, 1]]) / 8;

foreach (q in D)

A[q] = B[q];

Figure 1: Example of Titanium code amenable to fusion, tiling, and array contraction.

ure 1 is a sample snippet of Titanium code.
For our purposes here, the salient language char-

acteristics are:

• Titanium is an explicitly parallel dialect of Java.

• The primary form of iteration in Titanium
is foreach (p in D) S, where the iteration
space, D, is an arbitrary subset of Z

N ; S is any
statement; and N is a compile-time constant. A
foreach executes its body, S, |D| times with p

bound to each element of D in an unspecified
order.

3 Tiling and Fusing Loops

We are interested in reordering loops primarily as a
means to improve temporal locality. Stencil codes
such as multigrid are our motivating example. In
multigrid many temporary values are only used once,
and good performance can be achieved only if the
bulk of those temporaries are used and discarded
without ever leaving the CPU. That typically re-
quires fusing the loops that produce and consume a
given stream of temporaries. The way we fuse loops
is driven by dependences—usually corresponding to
the flow of data. If i iteration-space nodes in one loop
produce d data that are consumed by j iteration-
space nodes in another loop then our dependence-
driven approach can produce tiles with a ratio of i

nodes of the one loop to j nodes of the other.
The design goals of our reordering engine include

generality and parameterization. We also aggres-
sively fuse and tile loops even if (cheap) runtime tests
are necessary to ensure safety: we require no static
information about loop bounds, array bounds, or ar-
ray aliasing. (An always-safe version of optimisti-
cally transformed code is also generated, in case the
runtime test fails.) Parameterization allows aggres-
siveness to be tempered by striving to satisfy the
programmer’s fitness criterion. For example, while
the methods presented below can fuse any number of

loops, the parameterization allows the opportunity
to fuse the “right” number.

The space of parameters is searched using a
programmer-specified fitness criterion that is un-
known to tc, the Titanium compiler. “Fitness” is
usually the time to perform some calculation. Re-
gardless, we chose not to explicitly model register
reuse or cache behavior or other factors that tend
to correlate with the fitness of a reordering trans-
formation. We felt it was more important to im-
plement the transformations that might be neces-
sary for best results and to hope that a parameter
search will eventually find favorable parameters. In-
adequate transformations may be impossible to be
overcome, but inadequate estimation of parameters’
value at worst prolongs the time to reach the best
parameters. So for now, we value a set of parameters
by compiling, running, and measuring the program
being optimized.

3.1 Formalism

For an N -dimensional foreach, we define the tile
space T with tile size K to be the cross product Z

N ×
{0, . . . ,K − 1}. The kth step of the tile at ~x is the
point 〈~x, k〉 ∈ T . The tile at 0 means the tile at
[0, . . . , 0]. We specify a loop reordering by a total
order on T , ≺, and a bijection, C:T ↔ Z

N . That
is, the codomain of C serves as the loop’s iteration
space, the domain of the loop control variable. For q

and q′ in tile space and C(q) and C(q′) in the loop’s
iteration space, define C(q) ≺ C(q′) iff q ≺ q′. Our
implementation always uses lexicographic order on
T . A tile is a set of points 〈~x, 0〉, . . . , 〈~x,K − 1〉 in T

or the corresponding set in the loop’s iteration space,
C(〈~x, 0〉), . . . , C(〈~x,K − 1〉).

Figure 2 illustrates the above formalism. It ex-
tends straightforwardly to the multi-loop case.

2

0

1

2

3

tile at 0
(a) (b)

Figure 2: Two views of a tiling with a 2x2 square tile. The tile at 0 is highlighted throughout. (a) Top:
square tiles in the iteration space. (Individual iterations not shown.) Bottom: T = Z

2 × {0, 1, 2, 3} is shown
with a star indicating each tile. The correspondence between the two spaces is roughly indicated. (b) A more
detailed view that shows individual steps. Top, the iteration space of the loop is shown with each loop iteration
drawn as a small dot. For simplicity, below we only show the tile at 0 (i.e., 〈[0, 0], 0〉 . . . 〈[0, 0], 3〉). Part of the
correspondence, C, between the top and bottom is indicated.

3

0

1

2

3

4

5

tile at 0

Figure 3: One way that the loops in Figure 1 can be optimized. The top shows a portion of the loops’ iteration
spaces with tiles outlined. (The first loop’s iteration space is on the left.) The tile at 0 is highlighted. Below
is tile space, Z

2 × {0, 1, 2, 3, 4, 5}, with only the tile at 0 shown. Part of the correspondence between the three
spaces is indicated. The curved arrows from the left side to the right side indicate the flow of data that can
be optimized via array contraction (section 4). In each tile, the first two values written to B (in steps 0 and
3) are consumed in the very next tile (in steps 2 and 4). They can be stored in registers. The third write
to B is consumed in the next stack of tiles, potentially a long time later. It can be replaced with a write to a
1-dimensional compiler-generated temporary array.

4

3.2 Inducing a Tiling

In this section we outline the method we use for in-
ducing a tiling for n + 1 consecutive foreach loops,
L0 through Ln. We assume the first n loops are
already tiled and fused together, with a tile space
T = Z

N ×{0, . . . ,K−1}. (Tiling one loop is well un-
derstood. Repeated application of this method can
tile and fuse together any number of loops.) If suc-
cessful, we output an integer K ′ > K and a corre-
spondence between the n + 1 loops’ iteration spaces
and T ′ = Z

N ×{0, . . . ,K ′ − 1}. Figure 3 shows sam-
ple output with K = 3 and K ′ = 6.

The basic idea is to select a point ~z ∈ Z
N and

consider the situation before and after each step of
the tile at ~z. Let P (~z, k) be the subset of T that
precedes step k of the tile at ~z. For S ⊂ T , let
Ready(S) be the nodes in Ln’s iteration space that
may legally execute if all elements of S have executed.
Our guess for the tile at ~z in the induced tiling will
include all K steps of the input’s tile at ~z, with nodes
of Ln interleaved based on when they become legal:
the input step 〈~z, k〉 will be followed by

Ready(P (~z, k) ∪ {〈~z, k〉}) \ Ready(P (~z, k)) .

We compare Ready(P (~z, 0)) to Ready(P (~z + e, 0)),
with e bound to each positive unit vector, to extend
our guess to other nodes of Ln.

In practice this works fabulously on stencil codes,
among others. However, the guess we generate is
only guaranteed to be legal if:

• The correspondence between Ln’s iteration
space and the new K ′−K steps of T ′ is a bijec-
tion, and

• The reordering violates no ordering constraints
(e.g., dependences).

If either condition fails then we do not fuse Ln with
the previous loops. The conditions are tested by con-
structing a Presburger formula and testing its satis-
fiability by invoking the Omega Library [13].

4 Array Contraction

Of our storage-related optimizations, we’ll describe
array contraction, which is the most important. Ar-
rays used as scratch space can sometimes be elim-
inated or dramatically reduced in size. The tiled
version of the program in figure 1 is about 1.4

times faster with array contraction. For programs
amenable to it, the running time saved from tiling
with array contraction is frequently more than dou-
ble the time saved from tiling alone.

The essential idea of our array contraction method
is illustrated by Figure 3. To contract an array we
require that for each write to it, the value is dead
within some fixed distance in tile space—e.g., the
write at 〈~x, j〉 is always dead by 〈~x + ~v, k〉. The
distance (e.g., 〈~v, k − j〉) determines how many val-
ues from that particular write can be live simultane-
ously, and therefore whether to hold those values in
scalar(s), 1-dimensional temporary array(s), . . . , or
(N − 1)-dimensional temporary array(s).

Strout et al. [26] analyze storage requirements for
an array B when there is some v such that B[p − v]
must be dead by the time B[p] is written, for all p.
The identical analysis applies to storage requirements
for array writes that we contract from N dimensions
to N − 1 dimensions, and an analogous analysis ap-
plies to the general case. Essentially, the only com-
plication arises when some integer t > 1 divides all
components of v. Figure 4 presents a variation on
the previous example. A basic tiling of that pro-
gram, Figure 5, illustrates the complication. The
array B can still be contracted, but the portion that
is contracted to scalars requires more storage than in
the previous example. Generally two values from tile
step 0 and two values from tile step 3 are live at any
moment. The logical way to store four values is in
four registers, but there are only two program points
that do the writing.

Applying Strout et al.’s analysis to our framework
yields two possible solutions in this case. First, each
array write that is contracted to a scalar can use a
circular buffer of t scalars if at most t values could
be simultaneously live. For example, with t = 2,

B[...] = expression;

becomes

temp1 = temp2;

temp2 = expression;

and corresponding reads of B use temp1 or temp2 as
appropriate. Alternatively, one can simply increase
the tile size, as shown in Figure 6.

In general, a particular textual write that is con-
tracted writes to a scalar, a fixed-size circular buffer
of scalars, a compiler-generated temporary array, or a

5

foreach (p in D)

B[p] = (4 * A[p] + A[p + [1, 0]] + A[p - [1, 0]] +

A[p + [0, 1]] + A[p - [0, 1]]) / 8;

foreach (q in D)

A[q] = (B[q] + B[q + [0, 2]]) / 2;

Figure 4: A slightly different example amenable to array contraction—a variant of Figure 1.

0

1

2

3

4

5

tile at 0

Figure 5: Illustration, in the same style as Figure 3, of Stoptifu’s default tiling of the code from Figure 4.

6

0
1
2
3
4
5
6
7
8
9
10
11

tile at 0

Figure 6: Using a bigger tile, temporary data consumed within a given tile stack always come from the
immediately previous tile.

7

fixed-size circular buffer of compiler-generated tem-
porary arrays. We have illustrated the first three
cases by example. We apply the fourth case when
one compiler-generated (N − ξ)-dimensional tempo-
rary array is insufficient but we find some t > 1 such
that t of them is sufficient.

5 Results

We present results for three Titanium programs: a
1-dimensional cellular automaton simulation (ca),
Gauss-Seidel relaxation (rbrb9), and multigrid (mg).
Figure 7 presents the kernel of the first program. The
second program is based on a C++/FORTRAN im-
plementation of Anderson’s Method of Local Cor-
rections (MLC) by Phil Colella and Paul Hilfinger.
Their implementation performs two red-black passes
in a row in several places, and rbrb9 is just that.
(According to Sellappa and Chatterjee [24], related
codes do as many as eight in a row.) The red-black-
red-black pattern is written as eight loops because
the code uses a 9-point stencil in 2D. We merge all
eight loops into one. A V-cycle of 3D multigrid,
based on Titanium code for Adaptive Mesh Refine-
ment ([23]) by Luigi Semenzato, is our largest bench-
mark, mg.

Most testing was done on two PCs running GNU
Linux. One is a 866MHz Intel Pentium III Copper-
mine, and one is a 1.4GHz AMD Athlon Thunder-
bird. The latter uses both gcc and icc (Intel’s C
compiler) while the former uses gcc only. We also
present one result on a Sun Solaris UltraSPARC us-
ing gcc. (tc generates C code.) All problem sizes
were chosen to fit comfortably in main memory but
not in cache.

Without tiling and storage optimizations, but with
all other optimizations, the baseline times for ca are
7.66s for the 167MHz UltraSPARC and 2.09s for the
866MHz Pentium III (table 1). A two hour search
on the Pentium doubled the baseline performance.
Improvement on the UltraSPARC is noticeable but
less spectacular.

The benefits of decreasing memory traffic are more
pronounced on the Pentium because its processor
speed to memory speed ratio is higher. It appears
that ratio will continue to increase in the future. The
Sun also searches parameter space relatively slowly
because equivalent compilations take longer.

Table 2 presents the results for rbrb9. All results
for rbrb9 come from the minimum wall-clock time of

five runs, presented to three significant figures. Dur-
ing searches the backend compiler was free to switch
between gcc and icc, but at the end of each run we
tried both, using that search’s best reported tc pa-
rameters. The baseline times are 3.73 seconds (gcc)
and 3.70 seconds (icc). With tc’s default parameters,
that improves to 2.48 seconds (gcc) and 2.36 seconds
(icc). The bottom line is a three-fold speedup.

There are numerous variations on multigrid (e.g.,
Briggs [2]), and many of them are amenable to our
system of optimization. Multigrid algorithms that
spend the majority of their time performing GSRB
or other linear relaxation methods are common. Sel-
lappa and Chatterjee [24] show a multigrid program
that spends 80% or more of its running time doing
GSRB. Using our results on rbrb9, we would improve
the performance of a program that spends 80% of its
time in GSRB by more than a factor of two.

The program mg is interesting because it contains
several different loops that have different opportu-
nities for optimization. The majority of the time
is spent on GSRB with a 7-point stencil in 3D, for
which no temporary storage is needed. In fact, a
näıve compiler does relatively well on this code. But
loop fusion, tiling, and storage optimizations still im-
prove mg in interesting ways.

We can contract only one array in mg. A resid-
ual is calculated and immediately used to correct the
right-hand side of the next coarser level. To expose
the temporary residual to contraction we manually
inlined part of the recursive call in the V-cycle. As
expected, our method for inducing the fusion of loops
combines “coarse” and “fine” loops in the necessary
1:8 ratio to allow contraction. Even better, it is able
to find one set of three loops that it combines in a
1:8:64 ratio.

While not as spectacular as the other results, both
array contraction and parameter search were neces-
sary to do well. The best results were obtained by
doing a 120 hour search that was unconstrained, then
manually profiling the code and adding a further 8
hour search that only modified parameters for the
most important Titanium method in the source code
(last line of table 3). The latter search used the best
result from the 120 hour search as its initial position
in parameter space.

8

/* x is the input and the output; y and z are temporaries. */

/* t is a fixed table of M elements. */

foreach (p in d)

y[p] = t[(a * x[p - [2]] + b * x[p - [1]] + c * x[p] +

d * x[p + [1]] + e * x[p + [2]]) % M];

foreach (p in d)

z[p] = t[(a * y[p - [2]] + b * y[p - [1]] + c * y[p] +

d * y[p + [1]] + e * y[p + [2]]) % M];

foreach (p in d)

x[p] = t[(a * z[p - [2]] + b * z[p - [1]] + c * z[p] +

d * z[p + [1]] + e * z[p + [2]]) % M];

Figure 7: Pseudocode for ca.

Pentium III UltraSPARC
Effort runtime (s) op/µs runtime (s) op/µs

baseline 2.09 158 7.66 8.62
0h 1.41 234 6.86 9.62
1h 1.08 306 6.79 9.72
2h 1.04 317 6.81 9.69
4h 1.02 324 6.78 9.73
8h 0.983 336 6.49 10.2

Table 1: Results for ca on 866MHz Pentium III and on 167MHz UltraSPARC. The 0h line shows running
times after compiling with tc’s default parameters. Longer searches yielded no further improvement. The
problem size was five times larger on the Pentium.

Array Runtime after
con- search

Effort traction with gcc with icc MFLOPS

baseline no 3.73 3.70 90.8
0h yes 2.48 2.36 142
120h no 1.49 1.44 233
120h yes 1.42 1.34 251
120h variable 1.30 1.22 275

Table 2: Results for rbrb9 on 1.4GHz Athlon. For all three searches, the C compiler used was free to switch
between gcc and icc. At the end, whatever parameters were selected were used with each C compiler, for
comparison purposes. Array contraction slows compilation, so varying it (last line) leads to a wider search
through parameter space than forcing it to be enabled (second to last line).

Effort runtime (s) MFLOPS

baseline 2.72 100
0h 2.62 104
120h 2.17 125
. . . +8h 2.01 135

Table 3: Results for mg on 1.4GHz Athlon Thunderbird.

9

6 Related Work

6.1 Optimization by Hand

Studies of manually rewritten source programs have
demonstrated optimizations that are quite similar to
what we have done. Manual optimization of sequen-
tial multigrid and related codes is primarily focused
on moving each datum from or to memory as in-
frequently as possible (Carter et al. [4]; Douglas et
al. [6]; Sellappa and Chatterjee [24]). Most interme-
diate results are written once and read once, and in
näıve code those data go all the way to main memory
and back. Multiple passes of, for example, Gauss-
Seidel relaxation, can be merged together, which al-
lows the majority of the intermediate results never
to leave the CPU. A write to memory followed much
later by a read from memory becomes a write to
and read from a register, thereby reducing cache and
memory usage and the dynamic instruction count.
Fusing loops and optimizing the use of storage is pre-
cisely the focus of our compiler work.

6.2 Compilers’ Tiling and Storage Opti-

mizations

The compilers that perform tiling are too numerous
to list. The SUIF project and its relatives have con-
tributed much over the years, including the award-
winning 1991 paper by Wolf and Lam [30] and Block-
ing and Array Contraction Across Arbitrarily Nested
Loops Using Affine Partitioning by Lim et al. [20].
The SUIF system is one of several capable of repre-
senting the reorderings that our system can generate,
but under what circumstances it would select them
is unclear.

There are three main differences between the SUIF
projects and our work. First, their primary focus
is on automatic parallelization, whereas Titanium is
an explicitly parallel language. We start from the
assumption that any parallel program or sequential
program should have highly efficient sequential code
at its heart. The key to our approach is to fuse loops
as tightly as possible; the key to their approach is to
minimize the degree of synchronization in automati-
cally parallelized code [19]. Second, we do more array
contraction. SUIF does array contraction only in the
case where the array can be contracted to a scalar
variable [20]. Both their own work and the afore-
mentioned manual optimization work indicate that
a more general form of array contraction is prefer-

able. Third, we subject many compiler parameters
to external control. Parameters include tile sizes and
what optimizations to apply, among others. SUIF
picks parameters statically.

A version of the D Compiler System aggressively
fuses loops and reorders array storage (Ding and
Kennedy [5]). Their technique is even more aggres-
sive than ours in some respects. However, their sys-
tem has two limitations that hinder its ability to
transform multigrid codes: it can only fuse loops in
a one-to-one ratio, and it does no array contraction.

Strout et al. introduced universal occupancy vec-
tors as a way to express equivalence classes among an
array’s indices [26]. An array can be contracted if the
compiler determines that at any time only one array
element per equivalence class can be live. However,
only one dimension of an array can be contracted, be-
cause two array indices are in the same equivalence
class if and only if they differ by some multiple of the
universal occupancy vector. Our new variant of array
contraction can contract an array to any combination
of lower-dimensional arrays and scalars. Even in the
case where contracting one dimension of an array is
prima facie optimal, our system can often contract
most of the array to a fixed number of scalars. This
is explained in section 4, and illustrated in Figure 3.

Song et al. describe a compiler that combines
loop shifting, loop fusion, and array contraction [25].
Tiling is not done: a given loop’s iterations are per-
formed in the same order as specified in the FOR-
TRAN source code. Furthermore, loop shifting is
a blunt tool for exposing loop fusion opportunities.
The advantage they gain by limiting the set of possi-
ble transformations is that selecting a transformation
at compile time can be reduced to solving a network
flow problem. Our compiler provides a richer set of
transformations, but probably runs slower. We ac-
cept that trade-off because some programs we care
about, including multigrid, require the richer set of
transformations to run fast.

Thies et al. [27] describe a unified mathematical
framework for analyzing the tradeoffs between paral-
lelism and storage allocation in a parallelizing com-
piler. Their work is based on Strout et al.’s univer-
sal occupancy vectors, and shares some of the same
limitations. In particular, their system can at best
contract one dimension of an array.

Kodukula et al. describe a system that fuses loops
aggressively and performs hierarchical tiling [17].
Their system works by grouping all loop iterations

10

that touch a given parallelogram of a given array,
which can work well for dense linear algebra. How-
ever, it relies on the assumption that one array can
provide a one-to-one mapping to—and thus a tiling
of—all loops’ iteration spaces. Therefore, as they
mention, their system cannot handle stencil codes
such as Jacobi or Gauss-Seidel. Another difference is
that we place more emphasize on storage optimiza-
tions.

For simplicity, we have only investigated tilings
that tile all space with a single tile. More com-
plicated reordering techniques include Flynn Hum-
mel et al.’s “fractiling,” a method that uses tilings
with many different tile sizes [9]; and Jin et al.’s
“recursive prismatic time skewing,” which thus far
has only been demonstrated in a hand-optimization
study [12]. We are considering incorporating such
techniques into our system.

6.3 Parameter Searching

A compilation system that does not expose param-
eters for tuning is necessarily suboptimal, because
no compiler that takes finite time can always guess
the best parameters for all programs. Projects
that use parameter searching include PHiPAC [1],
ATLAS [29], Sparsity [10] [11], FFTW [7], and
OCEANS [14] [15] [21] [16].

PHiPAC and ATLAS automatically generate nu-
merous variants of matrix multiply or other kernels
in an attempt to select the best one for a particular
task on a particular machine. PHiPAC and ATLAS
use hand-crafted templates for handling edge cases,
copying data, prefetching, selecting regions of param-
eter search space, and so on. That, and the tremen-
dous advantage in code generation speed, make it
difficult for a general-purpose compiler to keep up.

As far as tuning parameters in a compiler,
OCEANS demonstrates that “iterative compilation”
is a valuable technique. One interesting result of
theirs is that simulated annealing and at least four
other search techniques that they tried all have about
the same performance characteristics. We have been
reasonably happy with simulated annealing and their
efforts make us feel even more comfortable going for-
ward.

Combining the brute force of parameter searching
with modeling techniques is a sensible extension to
our current search method (e.g., Vuduc et al. [28]).
OCEANS also combines parameter space modeling

with search.

7 Conclusion

The compiler optimizations we do yield the best
available approximation to state-of-the-art hand-
optimization techniques for multigrid. We apply
them aggressively even in some cases where runtime
tests are necessary to ensure safety. In combina-
tion with a parameter search via simulated annealing,
simple codes yield great performance. We also view
this work as a step towards “PHiPAC for any source
program.”

Acknowledgement. We’d like to thank the six
anonymous reviewers for their helpful comments on
the original submission.

References

[1] J. Bilmes et al. Optimizing matrix multiply using
PHiPAC: A portable, high-performance, ANSI C
coding methodology. In Proc. ICS’97, pages 340–347,
1997.

[2] W. L. Briggs. A Multigrid Tutorial. SIAM, 1987.

[3] Doug Burger, James R. Goodman, and Alain Kägi.
Quantifying memory bandwidth limitations of cur-
rent and future microprocessors. In Proceedings of
the 23rd International Symposium on Computer Ar-
chitecture, 1996.

[4] Larry Carter, Jeanne Ferrante, Susan Flynn Hum-
mel, Bowen Alpern, Kang-Su Gatlin. Hierarchical
Tiling: A Methodology for High Performance. UCSD
Technical Report CS96-508, November 1996.

[5] Chen Ding and Ken Kennedy. Improving Effec-
tive Bandwidth through Compiler Enhancement of
Global Cache Reuse. In Proc. IPDPS 2001, San
Francisco, CA, 2001.

[6] C. C. Douglas et al. Maximizing Cache Mem-
ory Usage for Multigrid Algorithms. In Z. Chen,
R. E. Ewing and Z.-C. Shi, editors, Multiphase Flows
and Transport in Porous Media: State of the Art,
Springer-Verlag, Lecture Notes in Physics, Berlin,
2000.

[7] FFTW. http://www.fftw.org/.

[8] P. N. Hilfinger et al. Titanium Language Reference
Manual. Technical Report CSD-01-1163, Computer
Science Division, University of California, Berkeley,
2001.

11

[9] S. Flynn Hummel, I. Banicescu, C. Wang, and
J. Wein. Load Balancing and Data Locality via
Fractiling: An Experimental Study. In Boleslaw K.
Szymanski and Balaram Sinharoy, editors, Proc.
Third Workshop on Languages, Compilers, and Run-
Time Systems for Scalable Computers, pages 85–89.
Kluwer Academic Publishers, Boston, MA, 1995.

[10] Eun-Jin Im. Optimizing the Performance of Sparse
Matrix-Vector Multiplication. Ph.D. dissertation,
University of California, Berkeley, 2000.

[11] Eun-Jin Im and Katherine Yelick. Optimizing Sparse
Matrix Computations for Register Reuse in SPAR-
SITY. International Conference on Computational
Science, 2001.

[12] G. Jin, J. Mellor-Crummey, and R. Fowler. Increas-
ing Temporal Locality with Skewing and Recur-
sive Blocking. In Proc. SC2001, Denver, Colorado,
November 2001.

[13] Wayne Kelly, Vadim Maslov, William Pugh, Evan
Rosser, Tatiana Shpeisman, and David Wonnacott.
The Omega Library interface guide. Technical Re-
port CS-TR-3445, Dept. of Computer Science, Uni-
versity of Maryland, College Park, March 1995.

[14] T. Kisuki, P. M. W. Knijnenburg, K. Gallivan, and
M. F. P. O’Boyle. The Effect of Cache Models on
Iterative Compilation for Combined Tiling and Un-
rolling. In Proc. FDDO-3, pages 31-40, 2000.

[15] T. Kisuki, P. M. W. Knijnenburg, and
M. F. P. O’Boyle. Combined Selection of Tile
Sizes and Unroll Factors Using Iterative Compi-
lation. Technical Report 2000-07, LIACS, Leiden
University, 2000.

[16] P. M. W. Knijnenburg, T. Kisuki, and
M. F. P. O’Boyle. Iterative Compilation. In
Embedded Processor Design Challenges—System
Architecture, Modeling and Simulation (SAMOS),
Springer Lecture Notes in Computer Science
vol. 2268, pages 171–187, 2002.

[17] Induprakas Kodukula, Nawaaz Ahmed, and Keshav
Pingali. Data-centric Multi-level Blocking. In SIG-
PLAN 1997 conference on Programming Language
Design and Implementation, June 1997.

[18] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The
cache performance and optimizations of blocked al-
gorithms. In Proceedings of the Sixth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, 1991.

[19] Amy W. Lim and Monica S. Lam. Maximizing par-
allelism and minimizing synchronization with affine
partitions. Parallel Computing, 24:445–475, 1998.

[20] Amy W. Lim, Shih-Wei Liao, and Monica S. Lam.
Blocking and Array Contraction Across Arbitrar-
ily Nested Loops Using Affine Partitioning. ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2001.

[21] M. F. P. O’Boyle, P. M. W. Knijnenburg, and
G. G. Fursin. Feedback Assisted Iterative Compila-
tion. Preprint, 2000.

[22] Geoffrey Pike. Reordering and Storage Optimizations
for Scientific Programs. Ph.D. dissertation, Univer-
sity of California, Berkeley, January 2002.

[23] G. Pike, L. Semenzato, P. Colella, P. Hilfinger. Par-
allel 3D Adaptive Mesh Refinement in Titanium. In
Proceedings of the SIAM Conference on Parallel Pro-
cessing for Scientific Computing, San Antonio, TX,
March 1999.

[24] Sriram Sellappa and Siddhartha Chatterjee. Cache-
Efficient Multigrid Algorithms. In Proceedings of
the 2001 International Conference on Computational
Science (ICCS 2001), San Francisco, CA, May 2001.

[25] Y. Song, R. Xu, C. Wang, and Z. Li. Data Local-
ity Enhancement by Memory Reduction. 15th ACM
International Conference on Supercomputing, June
2001.

[26] Michelle Mills Strout, Larry Carter, Jeanne Ferrante,
and Beth Simon. Schedule-independent storage map-
ping for loops. International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS), October 1998.

[27] William Thies, Frédéric Vivien, Jeffrey Sheldon,
and Saman Amarasinghe. A Unified Framework for
Schedule and Storage Optimization. In Proceedings
of the 2001 SIGPLAN Conference on Programming
Language Design and Implementation.

[28] R. Vuduc, J. Demmel, and J. Bilmes. Statistical
Models for Automatic Performance Tuning. In Pro-
ceedings of the 2001 International Conference on
Computational Science (ICCS 2001), San Francisco,
CA, May 2001.

[29] R. Whaley and J. Dongarra. Automatically Tuned
Linear Algebra Software. Technical Report UT CS-
97-366, LAPACK Working Note No. 131, University
of Tennessee, 1997.

[30] Michael E. Wolf and Monica S. Lam. A data locality
optimizing algorithm. In ACM SIGPLAN ’91 Con-
ference on Programming Language Design and Im-
plementation, 1991.

12

