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Abstract

Parallel programs share data in ways that may not be
obvious at the source level. Understanding a program’s
data sharing behavior is critical to understanding the
program as a whole, and is also a necessary component
for numerous program analysis, optimization, and run
time clients. We report on the design of and experience
with an implementation of a data sharing analysis for
the Titanium programming language.

1 Introduction

Sharing analysis describes the ways in which data is (or
is not) shared among components of a parallel comput-
ing system. Liblit et al. [9] develop a family of data shar-
ing models based on type qualifiers, and show how type
inference can automatically identify shared and private
data in a small pointer- and tuple-manipulation lan-
guage. That work also enumerates a variety of analysis
clients which can potentially benefit from static knowl-
edge of data sharing patterns. In this paper we present
a case study of sharing analysis in the real world.

Section 2 briefly introduces the Titanium scientific
programming language which we have extended to re-
flect data sharing. In Section 3 we examine specific
Titanium features in greater depth to show how the
sharing models and inference strategy used by Liblit et
al. [9] map onto a complete, realistic programming lan-
guage. We consider several analysis and optimization
clients in Section 4, and report on the effectiveness of
sharing analysis in supporting their implementation and
deployment. Section 5 concludes.

∗This research was supported in part by NASA Grant
No. NAG2-1210, NSF Infrastructure Grant No. EIA-9802069,
NSF Grant No. CCR-0085949, NSF Infrastructure Agreement
No. ACI-9619020, DOE Prime Contract No. W-7405-ENG-48
through Memorandum Agreement No. B504962 with LLNL, and
an NDSEG fellowship. The information presented here does not
necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

2 Titanium: A Language for

Distributed Scientific
Computing

Titanium is an experimental language for high perfor-
mance parallel computing. Titanium has the syntax
and semantics of Java, although it compiles to native
machine code rather than virtual machine bytecodes.
Titanium extends Java with a distributed global address
space, where processes can address, read, and write each
other’s data across physical machine boundaries [5].

Titanium does not use Java threads; rather, Tita-
nium programs use a rigidly structured Single-Program
Multiple-Data (SPMD) model of parallelism: each pro-
cessor in a distributed computing cluster runs the same
program on different data. A common mode of oper-
ation for such programs would be to partition a large
grid, with each processor computing the local behavior
of some simulation on its portion of that grid. Proces-
sors communicate to exchange boundary information,
but for peak performance one tries to design SPMD al-
gorithms in which most computation is local with only
minimal cross-processor coordination.

Any reference in a Titanium program may be de-
clared local. Unqualified references are assumed to be
global, but may be changed to local by type inference.
Earlier research has shown that automatic inference of
local qualifiers is quite effective for real Titanium pro-
grams [8].

We have added shared/private/mixed qualifiers in
the same spirit.1 Unqualified references are assumed
to be shared; programmers may declare references as
private or mixed subject to validation by the type
checker. Stronger (more private) qualifiers are added
automatically using type inference with either late or
early enforcement. Our inference engine is based on the

1In Titanium source code, “private” is spelled “nonshared” to
avoid a naming conflict with Java’s existing but unrelated private

access qualifier, while “mixed” is spelled “polyshared” to suggest
polymorphic sharing. These changes are merely syntactic, and we
will continue to use shared/private/mixed in this paper except
where giving literal examples of Titanium source code.
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cqual qualifier inference engine [4].
Qualifiers appear after the qualified type. Thus,

“Object” is a global reference to a shared object, while
“Object local nonshared” is a local reference to a
private object. Arrays are references as well, and each
level within a multidimensional array carries its own
type qualifiers:

Object local polyshared
︸ ︷︷ ︸

innermost element type

[] local
︸ ︷︷ ︸

outer array

[] nonshared
︸ ︷︷ ︸

inner array

The innermost array element type appears first, and
subsequent left-to-right array qualifiers associate with
outermost-to-innermost levels of the array. Filling in
implicit global and shared qualifiers where necessary,
then, this is the type of a local pointer to a shared array
of global pointers to private arrays of local pointers to
mixed objects.

Clearly, type syntax can grow cumbersome, partic-
ularly for the multidimensional arrays common in sci-
entific programming. An explicit sharing qualification
syntax supports the use of types as documentation, but
may be cumbersome to maintain over the long term.
Maintenance problems become especially acute when
dealing with legacy code. Titanium incorporates six-
teen thousand lines of Java source code for standard
packages such as java.io, java.lang, and java.util.
None of this source code contains explicit sharing qual-
ifiers, but it would be impractical to annotate so much
code by hand and to maintain those annotations over
the long term as Java and Titanium development con-
tinue. Thus we wish to provide automated qualifier in-
ference.

3 Accommodating Titanium
Features

While the type systems presented by Liblit et al. [9] are
a useful formalism for describing distributed data shar-
ing, they also raise certain practical questions about
how such approaches work in the real world. Titanium
contains many features not present in the tiny data ma-
nipulation language used in that work. However, the
core issues (such as global pointers to private data) can
be extended to accommodate real languages. We briefly
describe the highlights.

Titanium is object-oriented, with methods, inheri-
tance, and class- and interface-based polymorphism.
A method’s actual arguments must match its formals;
thus, if a method is observed to receive a shared argu-
ment in any context, the corresponding formal param-
eter is constrained to be shared or mixed within the
method body. Method calls, then, are treated as a set

of assignments: actuals are assigned to formals, and the
returned value is assigned back to the caller as the result
of the call.

Native methods, which are implemented by external
C code, are treated conservatively. Because the com-
piler has no access to the implementation, it is never
safe to change either the formal parameter types or the
return type of a native method. This conservative ap-
proach can be taken in any situation where only partial
information is available. For example, the analysis ac-
commodates separate compilation by forcing conserva-
tive analysis at module boundaries.

Inheritance simply induces additional constraints be-
tween parent and child classes. A subclass is constrained
to use identical types for any fields inherited from its
parent. Interfaces and overridden methods are handled
in the same manner.

The small data manipulation language of Liblit et al.
[9] forbids access to global private data, where access is
defined as dereferencing or assignment. For Titanium,
“access” includes such operations as reading or writing
a field, calling a non-static method, synchronizing, us-
ing the instanceof operator, or performing a checked
cast. Some of these are design decisions: one might de-
cide to treat an object’s monitor lock or dynamic type
information as being distinct from the object itself, and
thereby allow corresponding operations on global pri-
vate objects. The underlying models are flexible enough
to describe any desired policy.

3.1 Arrays

All elements of an array must share a single type. Thus,
an array can be treated as a referenced object contain-
ing a single field, where the type of that field is the type
of the array elements. We consider each use of an array
type to be distinct: if the source program declares two
arrays of shared objects, inference may change one to
an array of private objects while leaving the other un-
changed. There are no implied constraints between the
two arrays simply because they had the same type in
the source program. This flexibility is not extended to
named classes, where we require global agreement upon
the types of all fields.

A particularly tricky issue is handling type casts in-
volving arrays. When an array is implicitly cast to
Object, we forbid changes to any “forgotten” qualifiers
below the topmost level of the array type. When an
Object is dynamically cast back to an array type, we
also forbid changes to any “remembered” qualifiers be-
low the topmost level. By holding the qualifiers fixed in
both cases, we ensure that any dynamic casts will be-
have identically in the original and optimized programs.
Otherwise, if qualifiers were changed in the array decla-
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ration but not the explicit cast, or vice versa, dynamic
cast failures would occur where none existed in the orig-
inal program. This appears to be a general consequence
of the Java type system’s treatment of arrays and array
casting; local qualifier inference deals with an equivalent
issue in the same manner [8].

3.2 Conditional Expressions

In general, a conditional expression (?:) is sound pro-
vided that the two alternatives have some common su-
pertype. However, Java is more restrictive, requiring
that one of the alternatives be a supertype of the other.
Thus, the following expression is not valid Java, because
neither String nor Vector is a supertype of the other:

test ? new String() : new Vector()

In order to remain consistent with the spirit of Java’s
type system, we extend this restriction to include shar-
ing qualifiers. If α and β are the sharing qualifier vari-
ables for the two alternative branches, we add the fol-
lowing conditional constraints:

α ≤ shared =⇒ shared ≤ β

β ≤ shared =⇒ shared ≤ α

α ≤ private =⇒ private ≤ β

β ≤ private =⇒ private ≤ α

This forbids solutions that bind one of the qualifiers
to shared and the other to private, but allows all
other solutions where the qualifiers match or where at
least one of the qualifiers is mixed. If inference would
otherwise have chosen mismatched qualifiers, these con-
straints will force one branch or the other to be mixed

instead. The resolution strategy given by Liblit et al. [9]
is biased in favor of private qualifiers, so the private

branch will be retained and the shared branch will in-
stead be forced to mixed.

This makes the analysis more conservative than
strictly required for soundness, and one can construct
artificial examples that reflect this. In practice, we have
found only a single realistic benchmark in which these
restrictions have any affect at all, and even in that case
the overall impact on the analysis results is negligible.

3.3 Data Declarations and Early
Enforcement

The data manipulation language of Liblit et al. [9] re-
ceived all data declarations from a predefined environ-
ment; in Titanium, data declarations are given by the
programmer with explicit types (as in “Object foo”).
Explicit types can appear when declaring local vari-
ables, fields, method formal parameters, method return

types, and catch clause arguments. The early enforce-
ment type system of Liblit et al. [9] required that a
well-formed environment contain no global or shared
pointers to private or mixed data. The Titanium type
checker enforces a similar restrictions on data decla-
rations: when early enforcement is being used, global
pointers must also be shared and the referent of a shared
pointer must contain only shared fields.

When performing inference, the first of these restric-
tions induces strict equality constraints: given a decla-
ration Object foo, because foo is global we would re-
quire δfoo = shared where δfoo represents the inferred
sharing qualifier for this declaration.

The restriction on contained fields induces conditional
constraints, best illustrated by example. Suppose we
have the following declarations:

class Cell {

Object local δ1 up;

Object local δ2 down;

Object local δ3 left;

Object local δ4 right;

}

Cell local γ1 red;

Cell local γ2 green;

Cell local γ3 blue;

where δj and γi represent constraint variables for the
corresponding field and variable declarations. A näıve
implementation of the contained fields restriction would
use one conditional constraint relating each data decla-
ration to each contained field:

γi = shared =⇒ δj = shared

This would introduce a number of conditional con-
straints equal to the product of all data declarations
and fields within those declarations.

For better scaling, we introduce an additional qual-
ifier, κ, representing the Cell class as a whole. We
require that κ reflect the least upper bound of all uses
of Cell within declarations: γi ≤ κ. We also require
that each field of Cell be shared if κ is shared:

κ = shared =⇒ δj = shared

To extend this into any fields that Cell inherits from
a superclass, we also add a constraint κ ≤ κ′ where κ′

is the constraint variable associated with Cell’s super-
class.

Thus, if any of red, green, or blue is found to be
shared, then κ will be bound to shared, which will in
turn force all fields of Cell to be shared as well, which
is precisely the desired effect. The introduced κ vari-
able serves to summarize all uses of Cell, allowing us
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to introduce only 3+1 inequality constraints plus 4 con-
ditional constraints, rather than 3 × 4 conditional con-
straints under the näıve approach.

3.4 Polymorphism and the Role of
Mixed Sharing

As suggested by Liblit et al. [9], the default Object()

constructor is assumed to receive a mixed this argu-
ment, so that it can be called to build either shared or
private objects. More generally, a compiler-introduced
default constructor in any class is always assumed to
be mixed, as this offers the greatest flexibility for any
subclasses. As in Java, such constructors are only in-
troduced if the class has no explicit constructors.

Field initialization expressions can be thought of as
additional code inserted at the start of each constructor.
When type checking such expressions, we have three
options for how to treat this:

1. Assume that this is mixed. If an initialization ex-
pression type checks under this condition, then it
would work in any constructor.

2. Assume that this is shared if all constructors are
shared, private if all constructors are private, and
mixed otherwise. If an initialization expression
type checks under this condition, then it would
work in any constructor. However, it makes pro-
gram comprehension harder, as one cannot under-
stand any initializer without considering all con-
structors as well.

3. Type check each initialization expression up to
three times, with this as each of shared, private,
and mixed. Omit any type checks that do not cor-
respond to at least one constructor. This provides
maximal flexibility, but makes program compre-
hension harder and also increases the cost of type
checking.

We have selected the first approach, which is by far the
simplest. Mixed data admits few optimizations, but
field initialization expressions are neither complex nor
performance critical in typical programs. Mixed data
cannot be accessed remotely, but this is always local
during field initialization. Most field initializers do not
even refer to this at all. Thus, we find the mixed-this
assumption to be quite reasonable in practice.

4 Experimental Findings

We have used qualifier inference to study the data shar-
ing behavior of several benchmark programs ranging in

size from small algorithm kernels to complete applica-
tions. All benchmarks are designed for distributed ex-
ecution, and reflect the scientific focus of SPMD pro-
gramming. In order of size, the benchmark programs
are:

pi: 56 lines. A simplistic Monte Carlo simulation, in-
tended as an illustrative micro-benchmark rather
than as a full application. We estimate π using
5,000,000 random tosses on one processor.

sample-sort: 321 lines. Sample sort, a distributed
sorting algorithm. We sort 218 thirty two bit in-
teger keys, with 64 keys per sample, on four pro-
cessors.

lu-fact: 420 lines. LU factorization for dense matri-
ces. We factor a 1024 × 1024 element random ma-
trix, partitioned into sixty four 128 × 128 element
blocks, on four processors. No pivoting is used.

cannon: 518 lines. Cannon’s algorithm for dense matrix
multiplication. We multiply a pair of random 200×
200 matrices on four processors.

3d-fft: 614 lines. Fast Fourier transform. We perform
a 3D FFT on 643 random floating point values on
eight processors.

n-body: 826 lines. A simple n-body simulation based
on n2 operations for n bodies. We simulate fifty
particles on four processors.

gsrb: 1090 lines. The Gauss-Seidel Red Black algo-
rithm for solving elliptic partial differential equa-
tions. We solve a 2048×128 element problem, par-
titioned into four 512× 128 element patches across
100 full iterations, on four processors.

particle-grid: 1095 lines. An n-body simulation
with limited range of interaction: only particles in
neighboring processors affect each other. We sim-
ulate fifty particles on four processors.

pps: 3673 lines. A parallel solver for elliptic equations
with infinite domain boundary conditions, using a
two-level domain decomposition approach [2]. We
solve a 512× 512 element problem partitioned into
four 128 × 128 element patches, with a refinement
ratio of 16 between coarse and fine grids, on four
processors.

ib: 3777 lines. A heart simulation using the immersed
boundary method [10]. Involves a particle/grid
method and spectral fluid solver. We model a con-
tractile torus for eight iterations of the immersed
boundary method on two processors.
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amr: 5206 lines. A parallel solver for the Poisson equa-
tion using adaptive mesh refinement [11]. We op-
erate on a four-level grid hierarchy for twenty iter-
ations on four processors.

gas: 8841 lines. An implementation of the Berger-
Colella algorithm for solving hyperbolic equations
using adaptive mesh refinement [3]. We model a
Mach 10 shock wave hitting a solid surface at an
oblique angle on four processors.

4.1 Static Sharing Metrics

Late enforcement permits global private pointers, pro-
vided that they are never actually used. While Liblit
et al. [9] speculate on why such opaque pointers might
be useful, it is not obvious that this corresponds to
the behavior of real programs. If opaque global private
pointers have no practical value, then we would expect
that early and late enforcement would yield substan-
tially equivalent results. Since early enforcement is also
usable by more clients, it is reasonable to ask whether
late enforcement has any real benefit.

For each benchmark program, we identify all syntac-
tic locations where a sharing qualifier could possibly
appear. This includes declarations of local variables,
fields, method formal parameters, method return types,
and catch clause arguments. It also includes the types
used in casts and the instanceof operator, and an ad-
ditional qualifier that characterizes the implicit this

parameter to each non-static method. We exclude dec-
larations of primitive types, and distinguish each level
of indirection in multidimensional arrays. Thus, a lo-
cal variable declared as “int value” is not a candidate
site, whereas “Object[][] table” has three potential
sites for sharing qualification.

Table 1(a) shows the number of candidate sites in
each benchmark, and the count of sites inferred shared,
mixed, and private under late and early enforcement.
Although whole-program inference was used, we present
here only those sites appearing in the benchmark appli-
cation code (not in libraries). Table 1(b) presents equiv-
alent counts scaled as a percentage of the total number
of candidate sites.

4.1.1 Late versus early

Benchmarks are ordered by size in source code lines. For
small- and medium-sized benchmarks, late and early
enforcement are indistinguishable: the thousand-line
particle-grid program shows only a single qualifier
change, and smaller benchmarks show no changes what-
soever. For the larger benchmarks, we do see that early
enforcement forces several qualifiers to be shared or

mixed where late enforcement allowed private. Even
in these cases, though, the number of qualifiers changed
is relatively small. Only one benchmark, pps, shows a
pronounced difference: the proportion of private qual-
ifiers drops from 54% under late enforcement to 50%
under early enforcement. It appears that the late/early
distinction is not significant for most programs.

Regardless of which system is used, we do consistently
identify large amounts of private data in all benchmarks
of all sizes. The largest benchmark, gas, is found to use
private data at half of all declaration sites. Other bench-
marks range from 16% to 75%, and overall 46% of all
sites in all benchmarks are inferred private. This is
encouraging news for analysis clients which may want
to exploit such information. It also reinforces the need
for inference: it is unlikely that any human program-
mer could correctly place all such qualifiers by hand, or
maintain such qualifiers over time.

4.1.2 Mixed sharing

We observe that a few mixed qualifiers appear in nearly
every benchmark. In many cases, mixed data is found in
utility code shared by distinct parts of the application.
For example, the one mixed qualifier found in 3d-fft

applies to the constructor for Imaginary, an implemen-
tation of imaginary numbers. If mixed were unavailable,
the constructor could only be shared, which would in
turn force all imaginary numbers to be treated as shared
data even when used by only a single process.

In other benchmarks, we see code of the following
general form:

if (. . . ) data = myPrivateData;

else data = mySharedData;

. . . use data . . .

When a single piece of code may manipulate either
private or shared data based on some runtime con-
dition, that data will be inferred mixed. Again, if
mixed were unavailable, we would have no choice but
to declare data as shared, which in turn would force
myPrivateData to shared. One might consider a lim-
ited form of polymorphism available only at methods,
but even that would require some form of automated
code factoring to isolate the data-manipulating code
into its own method. The mixed qualifier, then, may
be more important to the overall system than its small
numbers would suggest.

4.2 Analysis Performance

Liblit et al. [9] give an efficient algorithm for computing
the best (maximally private) solution to a set of shar-
ing constraints. Table 2 presents the wall clock running
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benchmark sites
late early difference

shared mixed private shared mixed private shared mixed private

pi 12 3 0 9 3 0 9
sample-sort 73 28 1 44 28 1 44
lu-fact 150 81 4 65 81 4 65
cannon 162 59 4 99 59 4 99
3d-fft 191 70 1 120 70 1 120
n-body 113 86 1 26 86 1 26
gsrb 281 135 2 144 135 2 144
particle-grid 201 167 1 33 168 0 33 +1 -1
pps 551 224 27 300 244 32 275 +20 +5 -25
ib 1094 616 7 471 637 7 450 +21 -21
amr 1353 776 12 565 794 12 547 +18 -18
gas 1699 851 3 845 867 2 830 +16 -1 -15

(a) Absolute counts of inferred qualifiers

benchmark
late early difference

shared mixed private shared mixed private shared mixed private
pi 25% 0% 75% 25% 0% 75%
sample-sort 38% 1% 60% 38% 1% 60%
lu-fact 54% 3% 43% 54% 3% 43%
cannon 36% 2% 61% 36% 2% 61%
3d-fft 37% 1% 63% 37% 1% 63%
n-body 76% 1% 23% 76% 1% 23%
gsrb 48% 1% 51% 48% 1% 51%
particle-grid 83% < 1% 16% 84% 0% 16% < 1% < 1%
pps 41% 5% 54% 44% 6% 50% +4% +1% −4%
ib 56% 1% 43% 58% 1% 41% +2% −1%
amr 57% 1% 42% 59% 1% 40% +1% < 1%
gas 50% < 1% 50% 51% < 1% 49% +1% < 1% < 1%

(b) Relative counts of inferred qualifiers

Table 1: Inference results for static candidate sites
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benchmark late (msec) early (msec)
pi 546.7 717.1
sample-sort 558.4 597.9
lu-fact 580.8 620.8
cannon 597.8 635.0
3d-fft 613.5 668.1
n-body 567.4 689.6
gsrb 658.1 768.0
particle-grid 597.4 695.0
pps 795.8 851.4
ib 813.5 873.3
amr 842.3 914.7
gas 1028.2 1094.8

Table 2: Time required for sharing inference

time of the sharing inference phase of compilation for
each benchmark. The table is ordered by benchmark
size, and all times are given in milliseconds. Measure-
ments were taken on a 1.3 GHz Pentium 4 Linux work-
station.

Overall, performance is quite good: the largest bench-
mark takes barely more than one second. Early enforce-
ment calls for additional constraints, and therefore is
slower than late enforcement, but not radically so. It is
difficult to directly translate these times into per-line or
per-site scaling metrics, as our line and site counts ex-
clude the common class library whose size dwarfs that of
the benchmark applications. In broad terms, though, it
appears that sharing inference could be applied to pro-
grams many times larger than those used here without
disproportionately slowing compilation.

4.3 Optimizations

There are numerous potential ways to leverage knowl-
edge of the sharing behavior of a program; Liblit et al.
[9] lists several. We have implemented a subset of these
optimizations, and report our findings here.

4.3.1 Data location management

Shared memory may be a scarce or costly resource on
some systems. We have instrumented each benchmark
to tally the number of shared and private allocations
over the course of an entire run. Table 3 gives these
totals, in bytes, for each of late and early enforcement.
Observe that we see slight differences between the two
enforcement schemes even on small benchmarks which
reported identical results in Table 1. This is because
that earlier table examined only application code and
excluded libraries, whereas these allocation counts ap-
ply to the entire program. Slight differences in inference

results for library code are visible here as slight differ-
ences in allocation counts for late versus early enforce-
ment.

Overall, we see wide variation between bench-
marks, ranging from 99% of allocations shared
(particle-grid) to nearly 100% of allocations private
(n-body). We have examples at both extremes among
both the large and small benchmarks. Our largest
benchmark, gas, is also the most memory intensive, and
we find that 45% of allocated bytes can be placed in pri-
vate memory.

Most byte counts to not vary appreciably between
late and early enforcement, though amr sees an 11%
shift. The most dramatic shift is found in pps: late
enforcement allows 74% private allocation, while early
enforcement drops that to merely 19%. In Section 4.1.1
we observed that pps showed a relatively large differ-
ence in static private declaration counts as well. Clearly
those differences encompass data structures which ac-
count for a preponderance of pps’s runtime memory
consumption. When running on machines with costly
shared memory, pps stands to benefit greatly from data
location management guided by sharing inference.

4.3.2 Synchronization elimination

Private data can never come under lock contention, so
synchronization operations on private data can be re-
duced to simple nullity checks. We have added this
simple optimization to the Titanium compiler and ex-
amined its effect on our benchmarks. For ib, 31 out of
107 static synchronization sites can be optimized. For
particle-grid, we optimize 33 out of 108. For every
other benchmark, we eliminate 33 out of 107 synchro-
nizations. These statistics cover all synchronizations in
the entire program, including those in standard library
code.

Reducing a third of all synchronization sites to nul-
lity checks is good, but the uniformity of the results is
cause for skepticism. In all likelihood, there is a sta-
ble core of 107 sites appearing in library code which all
benchmarks import, such as from the synchronization-
intensive java.io package. Of these, the same 31–
33 are consistently found to be private. Within the
benchmarks’ source code, only a handful of synchro-
nization sites are found: 4 in each of particle-grid

and n-body, and none anywhere else. Monitor locking
is simply not a widely used coordination mechanism in
SPMD programs.

As expected, no measurable performance improve-
ment results from eliminating these 33 synchronization
sites. However, the fact that one third of sites are elim-
inated is encouraging, even if they do stem from library
code. The intensive use of barrier coordination is a

7



benchmark
late early

shared private shared private
pi 76283 (75%) 26072 (25%) 76283 (75%) 26072 (25%)
sample-sort 3385510 (5%) 68047664 (95%) 3427766 (5%) 69470768 (95%)
cannon 8981006 (60%) 5906248 (40%) 8981006 (60%) 5906248 (40%)
3d-fft 4869008 (52%) 4432352 (48%) 4869086 (52%) 4432352 (48%)
n-body 376623 (< 1%) 104141288 (100%) 376623 (< 1%) 104141288 (100%)
particle-grid 9739460 (99%) 125552 (1%) 9741804 (99%) 125552 (1%)
pps 19926363 (26%) 56688947 (74%) 61970108 (81%) 14645175 (19%)
amr 37330271 (88%) 4956819 (12%) 41973771 (99%) 313295 (1%)
gas 2649713367 (55%) 2209303072 (45%) 2649974879 (55%) 2209041536 (45%)

Table 3: Bytes allocated in shared or private memory. We omit gsrb and ib due to unrelated Titanium bugs
which prevent them from running to completion.

peculiar feature of SPMD programming, and relatively
shallow dependence upon the standard Java libraries is
peculiar to Titanium’s user base of scientific/numerical
coders. A wider sample of the distributed programming
spectrum may reveal programs for which synchroniza-
tion speed is performance critical, and which would then
accrue sizable benefit from sharing-inference-directed
synchronization elimination.

4.3.3 Consistency model relaxation

Titanium uses a fairly weak consistency model [5]. A
stronger model would be a more attractive program-
ming target if it did not unacceptably harm perfor-
mance. We can use sharing inference to selectively
weaken a strong consistency model in places where only
private data is being manipulated. We have imple-
mented such an optimization for a sequentially consis-
tent variant of Titanium.

Implementation strategy Because the Titanium
compiler is implemented as a Titanium-to-C translator,
sequential consistency requires cooperation both from
the Titanium compiler itself as well as the C compiler
which ultimately produces native code. In the current
Titanium compiler, the only reordering transformation
which would violate sequential consistency is the lift-
ing of invariant expressions out of foreach loops. For
sequentially consistent Titanium, we suppress lifting of
expressions which read or write shared data. (Lifting
takes place after compound expression rewriting, so a
complex source expression which accesses some shared
data and some private data can still have its private
portions lifted, so long as the shared portions stay in
place.)

Extracting sequential consistency from the C com-
piler requires a bit of subterfuge. Our general approach
is to restrict reordering by placing a read fence before
each shared read and a write fence after each shared

write. These fences must suppress reordering within
the C optimizer and also take any necessary steps to
prevent reordering by the host architecture at run time.

Our benchmarks were run on a four-way Pentium III
multiprocessor. This platform uses a “write ordered
with store-buffer forwarding” memory ordering model
[7]. For our purposes, this means that we need only
be concerned with read reordering at the architectural
level; write reordering cannot occur, even across proces-
sors.

Using gcc 3.0.1 as our native compiler, we can enforce
sequential consistency as follows. Before each shared
read, we inject the following C code:

asm volatile ("lock; addl $0,0(%%esp)"

: : : "memory")

This inline assembly directive inserts a locked add
instruction into the generated code. The add instruc-
tion itself has no effect, but the lock prefix forces the
processor to wait until all preceding instructions have
completed and all buffered writes have been drained to
memory. The mfence instruction would offer a closer
match to the required functionality. However, this is
part of the SSE2 extensions to the IA-32 architecture,
and is not available on the Pentium III [6].

The volatile keyword informs gcc that the assem-
bly code should not be removed even though it appears
to compute no useful result, while the "memory" clobber
specification declares that the code may have arbitrary
effects on memory. Together, these create an optimiza-
tion barrier that prevents gcc from deploying most op-
timizations across such an instruction; gcc will not, for
example, retain values in registers or combine or reorder
instructions across this barrier.

After each shared write, we need not be concerned
with architectural reordering and therefore require only
the optimization barrier:

asm volatile ("" : : : "memory")

8



Because gcc has such rich inline assembly facilities,
other architectures can be accommodated without dif-
ficulty. One need merely determine the appropriate
instructions to suppress architectural reordering, and
embed them within the optimization barrier described
above. A SPARC v9 multiprocessor, for example, re-
quires "" before shared reads and "fence #StoreLoad"

after shared writes [12].

Benchmark results Table 4 reports wall clock exe-
cution times of our benchmarks using the data sets out-
lined at the start of this section. Benchmarks were run
on a Linux 2.4.1 SMP with four 550 MHz Pentium III
CPU’s and 4GB of physical RAM. We present running
times using each of four configurations:

weak The weak consistency model used in standard
Titanium.

late Sequential consistency enforced except where late
enforcement can identify private data.

late Sequential consistency enforced except where early
enforcement can identify private data.

näıve Sequential consistency enforced everywhere.

For ease of comparison we also present the late, early,
and näıve times as slowdown factors relative to the weak
time. This is computed as time

weak
so that, for example, a

slowdown of 2.25 for näıve pi indicates that it ran 2.25
times slower than the weakly consistent version.

The large speedup for weak pi confirms that sequen-
tial consistency is costly if bluntly applied. Sharing in-
ference is able to identify enough private data, though,
to erase that penalty in the late and early variants.
Hand inspection shows that sharing inference for pi is
perfect: all data in the main computational loop is in-
ferred private and no restrictions are needed on op-
timizations to enforce sequential consistency. The late
and early versions yield machine code identical to that
under the weak model. The apparent early pi slow-
down (1.15) and late pi speedup (0.99) are measure-
ment noise.

For most of the other benchmarks, there is only mod-
est improvement between the näıve implementation and
the weak consistency model, so so the potential speedup
from sharing inference is limited. This defies conven-
tional wisdom, which says that sequential consistency
is too expensive. There are two potential sources of
inefficiency in the sequentially consistent versions: lost
optimization opportunities (e.g., loop transformations)
and additional memory fences between load and store
instructions. Neither of these appear significant. This
highlights a limitation of our experimental environment:

neither the Titanium compiler nor the Pentium hard-
ware is taking advantage of weak consistency.

Among the larger benchmarks, cannon, 3d-fft, and
amr have the most room for benefits. In 3d-fft, sharing
inference (either late or early) is able to nearly match
the weak model. Modest benefits are seen in cannon,
where the larger slowdown is only partly offset by infer-
ence. Late and early enforcement yield identical results
for cannon; the difference between the late and early
slowdown factors is measurement noise.

The results for amr are interesting. None of the key
performance-critical data structures can be inferred pri-
vate using our current system. Like many SPMD pro-
grams, amr has an alternating-phase structure: all pro-
cessors exchange boundary information, then each pro-
cessor updates its own local portion of the shared grid,
then all processors communicate again, and so on. Data
is shared widely during amr’s communication phase, but
we would like to treat that same data as private during
local computation phases. These phases are delimited
by global barrier operations, so no processor looks at
another processors’ data while the local computations
are taking place. For sharing inference to be effective
here, it would need to allow for a limited form of flow
sensitivity keyed to these phases. Because the structure
of barriers is quite regular in practice [1], we believe
such an extension of our techniques should be feasible.

We also observe that two benchmarks, sample-sort
and n-body, exhibit unexpected speedups under sequen-
tial consistency. Because the direct penalty of sequen-
tial consistency here is so small, measurement noise due
to secondary effects (such as cache alignment and the
layout of the machine code) is noticeable.

5 Conclusions

We have presented a case study of data sharing anal-
ysis as applied to the Titanium scientific programming
language. With careful design, sharing qualifiers can ac-
commodate all of the expected features of a complete,
real-world language. The approach is flexible enough to
encompass several formal sharing models in a variety of
sound language designs. Efficient type qualifier infer-
ence can be added to a compiler at little cost, making
static sharing information available for use by a variety
of subsequent analyses and optimizations.

Static assessment reveals that benchmark programs
do exhibit a variety of sharing patterns, with roughly
half of all heap reference declaration sites correspond-
ing to private data. Small differences between late and
early enforcement are seen; these may become more sig-
nificant for larger applications. Optimization effective-
ness varies widely. Synchronization elimination is easily
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benchmark
execution time (sec) slowdown vs. weak

weak late early näıve late early näıve
pi 14.69 14.55 16.96 33.01 0.99 1.15 2.25
sample-sort 15.52 11.47 12.05 16.65 0.74 0.78 1.07
cannon 11.21 21.08 19.78 22.95 1.88 1.76 2.05
3d-fft 8.06 8.15 8.14 9.82 1.01 1.01 1.22
n-body 143.48 119.25 114.27 112.66 0.83 0.80 0.79
particle-grid 42.21 44.35 44.62 43.41 1.05 1.06 1.03
pps 301.25 314.35 323.28 324.19 1.04 1.07 1.08
ib 188.73 198.94 199.83 205.72 1.05 1.06 1.09
amr 83.48 104.32 104.09 103.96 1.25 1.25 1.25
gas 383.97 395.57 395.00 419.25 1.03 1.03 1.09

Table 4: Performance cost of sequential consistency. We omit gsrb due to unrelated Titanium bugs which prevent
it from running to completion.

implemented, but not useful for our SPMD benchmark
suite. Most benchmarks would benefit from data lo-
cation management, an important issue when shared
memory is a costly resource. Consistency model re-
laxation is difficult to assess, as many of the programs
tested do not actually slow down when confined to se-
quential consistency. Where a cost is seen, sharing in-
ference can sometimes reduce or eliminate it. In other
cases, sharing patterns change over time, and a flow- or
phase-sensitive analysis would be required to properly
capture programs’ sharing behavior.
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